
Khaing Myint, Aye Aye Chaw; International Journal of Advance Research and Development

© 2020, www.IJARND.com All Rights Reserved Page | 40

(Volume 5, Issue 5)

Available online at: www.ijarnd.com

A simulation based study of TLB misses handling

Khaing Myint, Aye Aye Chaw

University of Computer Studies, Mandalay, Myanmar

ABSTRACT

 Most operating systems assign a page table for each process.

The page table keeps track of where the virtual pages are

saved in the physical memory. The virtual memory scheme

would suffer the effect of doubling the memory access time.

We can reduce the time taken to access the page table again

and again by using Translation Lookaside Buffer (TLB).

But, when we don’t find the page frame number inside the

TLB, the CPU has to access main memory for it. One

problem is where the needed information itself actually is in a

cache, although the information for virtual-to-physical

translation is not in a TLB. A TLB miss can be more

important due to the need for not just a load from main

memory. The paper priority explains the concept of TLB miss

handling because the translation is performed quickly

without having to consult the page table. This paper aims to

discuss how hardware can help us make address translation

faster and how to provide MIPS R4000 architecture on TLB

to translate virtual address into physical address. So, we will

describe TLB Control Flow Program to avoid TLB miss as

much as we can. We will explain that examine an array in a

tiny address trace. Also note the role that the array access will

suffer even fewer misses.

Keywords⸻ Memory management system, Address spaces,

Computer architectures, and Translation loodaside buffer

(TLB)

1. INTRODUCTION
Memory management is the act of managing the memory of

the computer. It is an essential function of the operating

system. The operating system maintains the virtual address

spaces and the assignment of real memory to virtual memory.

In the CPU, address translation hardware often indicated to as

memory management unit (MMU), automatically translates the
virtual addresses to physical addresses [9]. In operating system,

for each process page table will be created, which will contain

Page Table Entry (PTE) in register that will tell in the main

memory the actual page is reside. In this case, the processor

size may be big because requiring big page table although

register size is small. So registers may not hold all the PTE’s of

page table [7]. To overcome this small register size problem,

we describe that the TLB with high speed cache is set up for

page table entries. And then we studies to speed up address

translation and avoid the extra memory reference. The page

table entry required for conversion of virtual address to

physical address is not present in TLB that become TLB miss.
So, we mainly describe hardware management and software

management for handling TLB misses. If PTE valid hardware

fills TLB and processor never knows, TLB miss must occur. If

not, after which kernel decides what to do afterwards.
According to hardware exceptions, processor receives TLB

miss, kernel traverses page table. If TLB valid, it fills TLB and

returns from fault. If not, internally calls tarp handler. We

explain the concept of commonly found in modern

architectures the CR3 register on x86 that it uses in hardware

management TLB and the MIPS R4000 that architecture

specifies a software management TLB.

2. MEMORY MANAGEMENT SYSTEM

Most modern computers have special hardware called a

memory management unit (MMU). This unit sites between the
CPU and the memory unit. MMUs are used to provide virtual

addressing. A virtual address is generated by the CPU and a

physical address is translated by MMU [2].

Fig. 1: Memory management unit

Most MMUs use in-memory table of items known as a page

table, containing one-page table entry (PTE) per page, to map

virtual page numbers to physical page numbers in main

memory. The TLB that is used to avoid accessing the main

memory every time when a virtual address is mapped is an

associative cache of PTEs [10].

2. 1 Virtual and Physical Address Spaces

The operating system manages the physical memory and

allocates portions of the available physical memory to map

parts or the entire virtual address space of a process. When a

process requests to access a memory location, an address

translation from the virtual address space to the physical

address space needs to be performed. The address translation is

the function that provides that virtual-to-physical mapping; it

receives as input a virtual page number, or simply a virtual

address, and produces as output a physical page number, or
simply a physical address [6].

MMU

Physical address

TLB

CPU

Virtual address

Data

MEMORY

https://www.ijarnd.com/
http://www.ijarnd.com/

Khaing Myint, Aye Aye Chaw; International Journal of Advance Research and Development

© 2020, www.IJARND.com All Rights Reserved Page | 41

2.2 Computer Architectures

Two criteria for computer architectures are possible used in

modern architectures.

The x86 architecture is an instruction set architecture (ISA)
series for computer processor. Developed by Intel Corporation,

x86 architecture defines how a processor handles and executes

different instructions passed from the operating system and

software programs. The hardware is transparent to the kernel

because it handled the TLB misses in the x86 architecture. The

only time kernel code deals with the TLB when the contents of

the TLB are to be discarded (a TLB flush) [11].

One of the most widely supposed of all processor architectures

is the MIPS architecture that services to help ensure speedy,

safe and the cost effective of development. MIPS architecture

can solve to get maximum flexibility from processor IP by
microprocessor developers. In the MIPS R4000 architecture,

the TLB misses are handled by software-managed [3].

3. TRANSLATION LOOKASIDE BUFFER
Translation lookaside buffer (TLB) reduces the time taken to

access a user memory location. It is a part of the chip’s

memory management unit (MMU) and performs translation of

virtual memory address into physical memory address; thus, a

better name would be an address-translation cache. A TLB
may reside between the CPU and the CPU cache, between

CPU cache and the main memory or between the different

levels of the multi-level cache [7].

The majority of desktop, laptop, and server, smartphones and

other complex computation devices including one or more

TLBs as a part of the memory management facilities providing

virtual memory support [8]. The TLB is almost always

implemented as an associative cache. It contains only a few of

the page table entries. A virtual address’s page number is

displayed to the TLB generating the CPU it. Its frame number
is immediately available when the page number is found and

then access memory. When TLB miss become that is not in, a

memory reference to the page table must be made. When the

frame number is obtained, we can use it to access memory [1].

Fig. 2: Use of TLB in paging [4]

Address-space identifiers (ASIDs) are stored in each entry of

the some TLB. The ASID for the currently running process

matches with the virtual page when the TLB attempts to

resolve virtual page numbers. The ASIDs are treated as a TLB

miss when it does not match. An ASID allows the TLB to
contain entries for several different processes simultaneously

moreover providing address-space protection. Whenever a new

page table is selected, the TLB must be flushed to ensure

northing use the wrong translation information [1].

3.1 TLB Basic Algorithm

In this section, we start by looking at the basic algorithm of

TLB control flow that shows a rough sketch of how hardware

might handle a virtual address translation and OS handled of

TLB control flow for the TLB misses.

3.1.1 TLB Control Flow Algorithm
Firstly, we studied the basic TLB control flow algorithm that

the hardware follows works. That algorithm shows to handle

virtual address translation by assuming a simple linear page

table and a hardware-managed TLB [5].

1. VPN = (VirtualAddress & VPN_MASK) >> SHIFT

2. (Success, TlbEntry) = TLB_Lookup (VPN)

3. if (Success = = True) // TLB Hit

4. if (CanAccess (TlbEntry.ProtectBits) = = True)

5. Offset = VirtualAddress & OFFSET_MASK

6. PhysAddr = (TlbEntry.PFN << SHIFT) | Offset

7. Register = AccessMemory (PhysAddr)
8. else

9. RaiseException (PROTECTION_FAULT)

10. else //TLB Miss

11. PTEAddr = PTBR + (VPN * sizeof (PTE))

12. PTE = AccessMemory (PTEAddr)

13. if (PTE .Valid = = False)

14. RaiseException (SEGMENTATION_FAULT)

15. else if (CanAccess (PTE.ProtectBits) = = False)

16. RaiseException (PROTECTION_FAULT)

17. else

18. TLB_Insert (VPN, PTE.PFN, PTE.ProtectBits)
19. RetryInstruction ()

Fig. 3: TLB Control Flow Algorithm

 3. 1. 2 TLB Control Flow Algorithm (OS Handled)

Secondly, we describe OS handled TLB Control Flow

algorithm, if the CPU does not find the translation in the TLB.

We might guess the trap handler is code within the OS that is

written with the express of handling TLB misses [5].

1. VPN = (VirtualAddress & VPN_MASK) >> SHIFT

2. (Success, TlbEntry) = TLB_Lookup (VPN)

3. if (Success = = True) // TLB Hit

4. if (CanAccess (TlbEntry.ProtectBits) = = True)

5. Offset = VirtualAddress & OFFSET_MASK

6. PhysAddr = (TlbEntry.PFN << SHIFT) | Offset

7. Register = AccessMemory (PhysAddr)

8. else

9. RaiseException (PROTECTION_FAULT)
10. else //TLB Miss

11. RaiseException (TLB_MISS)

Fig. 4: TLB Control Flow Algorithm (OS Handled)

4. A SIMULATION FOR HANDLING TLB MISSES
The TLB contains a storage site for storing at least a part of a

virtual to physical memory translation. This storage location is

managed both hardware and software. When the hardware

CPU p d

Virtual

address

TLB miss

TLB hit

Physical

address

Frame

number

TLB

Page

number

f d

Physical

memory

Page table

f

p

https://www.ijarnd.com/

Khaing Myint, Aye Aye Chaw; International Journal of Advance Research and Development

© 2020, www.IJARND.com All Rights Reserved Page | 42

TLB manage, the format of the TLB entries is not visible to

software and can transform from CPU to CPU nothing loss of

compatibility for the programs (for instance using the CR3

register on x86 architecture).The instructions that allow

loading entries into any slot in the TLB can be had with the
software managed TLBs. The format of the TLB entry is

defined as a part of the instruction set architecture (for instance

using MIPS R4000 architecture).

4.1 TLB misses Handling with Basic Algorithm

Two schemes for handling TLB misses are commonly found in

modern architecture. This section discusses how to handle TLB

miss. In the above algorithm from figure (3 & 4), firstly we

assume protection checks success. The TLB holds the

translation that has a TLB hit. So, we can now extract the page

frame number (PFN) from the relevant TLB entry and then

examine on the offset from the original and raise the original
address and form the needed physical address and enter the

memory. If the CPU does not find the translation that has a

TLB miss, the hardware allows the page table to find the

translation. This problem is costly because the extra memory

index needed to access the page table. In this case, we assume

that the virtual memory reference generated by the process is

valid and accessible, the updates the TLB with translation.

When the TLB is updated once, the hardware retries the

instruction. At a moment, the translation is achieved in the

TLB and the memory index is processed fast. If TLB miss

occur often, the program will run more slowly and lead to more
memory access and are quite costly. Because the hardware

must have for aware definitely “where” the page tables are

found in memory, the hardware would move the page table to

find the correct page table entry and select the desired

translation then update the TLB with the translation and retry

the instruction.

The hardware raises an exception for northing have to do much

on a miss. And then, the OS TLB miss handler performs the

rest. So, secondly, we discuss TLB control flow algorithm (OS

Handled). That algorithm shows the software-managed TLB

which allows OS to use any data structure to implement the
page table without requiring a change in hardware. Software-

managed TLB is used in MIPS architecture. When the

hardware produces an exception on a TLB miss, the software-

management TLB produces the privilege level to kernel mode

and starts to a trap handler. In the OS which handles TLB miss

contain a code that specify the trap handler. When the code

run, it will see the translation in the page table and take special

the privileged instructions to update the TLB and return from

the trap handler. At this point, the hardware retries the

instruction that will result in a TLB hit. Besides, the hardware

must resume execution that caused the trap and this retry thus
allows the instruction run again, this time resulting in a TLB

hit. So, the OS wants to be further careful by eliminating an

infinite chain of TLB misses to occur.

Finally, we briefly describe that uses MIPS R4000 TLB entry.

We assume that the MIPS R4000 supports a 32-bit address

space with 4KB pages. We expect a 20-bit VPN and 12 bit

offset in our typical virtual address. TLB turns out only 19 bits

for VPN, the reset reserved for the kernel. The VPN translates

to up a 24-bit frame number (PFN), so can support systems

with up to 64 GB of main memory (224 4KB pages).

We explain a few other interesting bits in the MISP TLB. A

global bit (G) is used for pages that are globally-shared among
processes. The global bit is set by ignoring the ASID. In figure

(5), show the 8-bit ASID which the OS can use to distinguish

between the address spaces. Next, Coherence (C) bits

determine how a page is cached by the hardware; a Dirty (D)

bit is marked when the page has been written to; Valid (V) bit

inform the hardware when there is a valid translation instant in

the entry. In figure (5), some of the 64 bits are unused. MIPS
TLBs usually have 32 or 64 of these entries. Most of these are

used by user processes as they run. A few are reserved for the

OS. Where a TLB miss would be problematic, the OS uses

these reserved mappings for code and data that it wants to

access during critical times. Because MIPS TLB that is

software management needs to be instructions to update the

TLB.

Fig. 5: A MIPS TLB Entry

4. 2 TLB Handling with a Tiny Address Space

In this section, we examine a simple virtual address trace and

make the operation of a TLB to test how it can develop its
performance.

We assume that have a tiny address space: 8-bits, with 16-

bytes pages. So a virtual address contains two components:

 VPN = 4 bits =16 pages

 Offset = 4 bits

Let’s assume further that we have an array of 10 4-bytes

integers in memory, starting at virtual address 100.

Accordingly, we must use a simple loop that accesses each

array element, something that would look like this in C:

 int sum = 0;
 for (i = 0; i < 10; i++) {

 sum + = a [i];

 }

Figure (6) shows the array laid out on the 16 16-bytes pages of

the system. The first’s array entry a[0] will begins on VPN =

06 and Offset = 04.

 VPN = 00

 VPN = 01

 VPN = 02

 VPN = 03

 VPN = 04

 VPN = 05

 VPN = 06 a[0] a[1] a[2]

 VPN = 07 a[3] a[4] a[5] a[6]

 VPN = 08 a[7] a[8] a[9]

 VPN = 09

 VPN = 10

 VPN = 11

 VPN = 12

 VPN = 13

 VPN = 14

 VPN = 15

Fig. 6: An Array in a Tiny Address Space

When the first array element a[0] is accessed, the CPU will
load to virtual address 100. The hardware selects the VPN

from VPN = 06 and serves that to make sure the TLB for a

valid translation. If the program accesses the array, the result

will be a TLB miss. But the next two accesses are hits because

Offset

00 04 08 12 16

https://www.ijarnd.com/

Khaing Myint, Aye Aye Chaw; International Journal of Advance Research and Development

© 2020, www.IJARND.com All Rights Reserved Page | 43

we get on the same page. If the program accesses a[3], we meet

another TLB miss. But the next two entries will hit in the TLB

once again because of all reside on the same page in memory.

Consequently, the program access to a[7] causes one last TLB

miss. Next time the hardware examines the page table to get
the location of virtual page in physical memory and updates the

TLB. The final two accesses receive the benefits of this update.

Thus, we can access the hit rate for the array: with 7 hits and 3

misses, the hit rate is 70%. If a machine we have a tiny address

space 4KB, the pages will be 256 bytes pages. So the TLB hit

rate is high.

5. CONCLUSION

In this paper, we explain the concept of the TLB misses

handling with its need and role in problematic. We described

how hardware and software can help us make address

translation faster. In this paper, we explain with a simulation
that handling of TLB miss may be implemented in hardware or

software. The hardware management of the TLB entry

structure is transparent to the software which grants using

different processors until maintain software compatibility. The

hardware-managed TLBs are used in x86 architecture that is

designed to operate with very low latency and completely in

hardware. Software-managed of TLBs simplifies hardware

design and allow OS to use it wants to implement the page

table without necessitating the hardware change. However, the

software-management also incurs larger penalty. The MIPS

architecture enables reliable and cost effective that is use
software-managed TLBs.

6. ACKNOWLEDGEMENT

I would like to describe my sincere thanks to Dr. Aye Aye

Chaw, Professor, Head of Faculty of Computer Science,

University of Computer Studies (Mandalay) for her helpful

recommendations and suggestions. Families and friends are

acknowledged for their encouragement and unyielding support.

Reviewers and experts are also shown gratitude for their

assessments, contributions and comments towards this paper.

7. REFERENCES
[1] A. Silberschatz, P. B. Galvin, and G. Gagne, “Operating

System Concepts: Sixth Edition”, John Wiley & Sons,

Inc. 605 Third Avenue, New York, 2002.

[2] D.Agrawal, Memory Management Term Paper Operating

Systems CS-384, February 2, 2003.

[3] J. Heinrich, “MIPS R4000 Microprocessor User’s

Manual: Second Edition”, MIPS Technologies, Inc., 2011

N. Shoreline Blvd., Mountain View, CA 94039-7311,

1994.
[4] M. Agrawal and M. Jailia, Effect of TLB on System

Performance, ICTCS’16, Udaipur, India, and March 04-

05, 2016.

[5] R H. ARPACI-DUSSEAU and A C. ARPACI-

DUSSEAU, “Operating Systems: Three Easy Pieces”,

Univ. of Wisconsin-Madison, August, 2018 (Version

1.00).

[6] V. Karakostas, Improving the Performance and Energy-

efficiency of Virtual Memory: A Range-Based Approach,

April 2016.

[7] W. Stallings, “Operating Systems Internals and Design

Principles: Seventh Edition”, Prentice Hall, 1 Lake Street,
Upper Saddle River, New Jersey, 2012.

[8] Y.I. Klimiankou, Translation Lookaside Buffer

Management, UDC 004.451.3, April, 2019.

[9] http://en.wikipedia.org/wiki/Virtual_memory

[10] http://en.wikipedia.org/wiki/Memory_management_unit

[11] http://www.techopedia.com/definition/5334/x86-

architecture

https://www.ijarnd.com/
http://en.wikipedia.org/wiki/Virtual_memory
http://en.wikipedia.org/wiki/Memory_management_unit
http://www.techopedia.com/definition/5334/x86-architecture
http://www.techopedia.com/definition/5334/x86-architecture

