

Mittal Adarsh, Chadha Srishti; International Journal of Advance Research and Development

© 2019, www.IJARND.com All Rights Reserved Page | 7

(Volume 4, Issue 1)

Available online at: www.ijarnd.com

Text reader using convolutional Neural Networks
Adarsh Mittal1, Srishti Chadha2

1NVIDIA Graphics Private Limited, Bengaluru, Karnataka
2IBM India Private Limited, Bengaluru, Karnataka

ABSTRACT

Vision loss may be a drawback that affects individuals all around the world. As pcs have gotten higher at understanding pictures

because of advances in computer vision, the idea of a virtual assistant for the blind that would scan text1, identify/spot objects2,

or maybe describe an entire scene in natural language3 is turning into more and more realistic. In this project, I created an

Associate in nursing robot application capable of reading aloud Network, text (example product labels, price tags, text on

clothing). The appliance uses a classifier trained exploitation the MS-COCO4 and COCO-Text5 datasets to seem for text and

uses Google Cloud Vision to extract the text.

Keywords— Convolution Neural Network, Machine learning, Tensor flow

1. PROBLEM STATEMENT
The goal is to form a general text-reader running on robot smartphones; the tasks concerned are the following:

1. transfer and preprocess the MS-COCO and COCO-Text knowledge

2. Train a classifier that may verify if a picture contains text

3. Create the classifier run on the robot

4. Create the app extract the text (if any) exploitation Google Cloud Vision

5. Create the app speak the extracted text aloud

The final application is anticipated to be helpful for reading product labels, price tags, and different kinds of short, written text.

2. METRICS
Accuracy is a common metric for binary classifiers; it takes into account both true positives and true negatives with equal weight.

Accuracy = True positives + True negatives dataset size

This metric was used when evaluating the classifier because false negatives and false positives both erode the user experience:

 False negatives result in either a longer delay between the user pointing the camera text and device speaking the text

(“processing delay”) or in the worst case, completely prevent the application from reading said text

 On the other hand, false positives make the application try to extract text from images that don’t contain any. This results in

unnecessary computations on the remote server, which can be both costly and slow the application down. In the worst case, this

might also result in the application reading gibberish.

Processing delay (defined above) is also a metric that has a big effect on the user experience. It can be broken into two components,

as the image processing is done in two steps:

Processing delay ≈ Classification delay + Extraction delay

 The classification delay is the time it takes for the classifier to detect text; it is important by itself, as the application provides

feedback to the user immediately after it detects text.

 The extraction delay is the time it takes for the application to start speaking after t h e text was detected by the classifier.

3. ANALYSIS
3.1 Data Exploration

The COCO (Common Objects in Context) dataset has hundreds of thousands of richly annotated images; the annotations are not

described here because only the images are used. More accurately, only a subset of the images are used, the 2014 training images,

as the COCO-Text 1.0 dataset has annotations only for that particular subset. Of the 82,783 images, 63,686 contain text; altogether

there are 173,589 text instances, which is more than enough to train the classifier. The images are coloured and have around 600 *

400 pixels each.

https://www.ijarnd.com/
https://www.ijarnd.com/?utm_source=pdf&utm_medium=edition&utm_campaign=OmAkSols&utm_term=V4I1-1146

Mittal Adarsh, Chadha Srishti; International Journal of Advance Research and Development

© 2019, www.IJARND.com All Rights Reserved Page | 8

Fig. 1: Images from the MS-COCO dataset

The text annotations of the COCO-Text dataset have the following fields:

 “utf8_string”: the text itself (string)

 “bbox”: a bounding box around the text, in the form of [x, y, width, height] (integers)

 “language”: the language of the text; either “English”, “not English”, or “na” (string)

 “legibility”: the readability of the text; either “legible” or “illegible” (string)

 “area”: the area of the bounding box (float)

 “class”: the type of the text; either “machine printed, “handwritten”, or “others” (string)

 “image_id” (integer)

 “id” (integer)

As it can be suspected based on the above fields, some of the annotations are either illegible or not in English (or both), which

means they must be discarded during preprocessing.

3.2 Exploratory Visualization

The plot below shows how the legible, English text annotations are distributed among the images. This is helpful for predicting

how balanced the classes will be after the images are segmented.

Figure 2 A plot showing how the legible, English text annotations are distributed among the images. Note that the distribution

is right-tailed. (The 9+ column is large only because it contains the sum of all of the other columns which were cut off from

the plot.) If the distribution was left-tailed, that would suggest that the annotations are mostly assigned to a few of the images,

which could result in overfitting.

Fig. 2: Graph showing how the legible, English text annotations are distributed among the images

It can be seen that:

 The majority (50,000) of the images don’t have text annotations.

 About two-thirds of the images that do have annotations have less than 5.

The following plot in figure 3 shows how the areas of the bounding boxes of the same annotations are distributed. This information

can be helpful when trying to decide how big the image segments should be; if the area of an annotation is larger than the area of a

segment, then the annotation will be surely split apart, which should be avoided for most of the annotations.

https://www.ijarnd.com/

Mittal Adarsh, Chadha Srishti; International Journal of Advance Research and Development

© 2019, www.IJARND.com All Rights Reserved Page | 9

Fig. 3: Graph showing how the areas of the bounding boxes of the same annotations are distributed

When interpreting the areas of the bounding boxes, it’s helpful to take the square root of the values and keep in mind that most

of the images have a resolution of around 600 *400.

It can be seen that most of the bounding boxes are quite small; this indicates that the annotations are usually just a few words long

and that usually, the text is in the background.

4. ALGORITHMS AND TECHNIQUES

The classifier is a Convolutional Neural Network, which is the state-of-the-art algorithm for most image processing tasks,

including classification. It needs a large amount of training data compared to other approaches; fortunately, the COCO and

COCO-Text datasets are big enough. The algorithm outputs an assigned probability for each class; this can be used to reduce the

number of false positives using a threshold. (The tradeoff is that this increases the number of false negatives.)

The following parameters can be tuned to optimize the classifier:

 Classification threshold (see above)

 Training parameters

 Training length (number of epochs)

 Batch size (how many images to look at once during a single training step)

 Solver type (what algorithm to use for learning)

 Learning rate (how fast to learn; this can be dynamic)

 Weight decay (prevents the model being dominated by a few “neurons”)

 Momentum (takes the previous learning step into account when calculating the next one)

 Neural network architecture

 Number of layers

 Layer types (convolutional, fully-connected, or pooling)

 Layer parameters (see links above)

 Preprocessing parameters (see the Data Preprocessing section)

During training, both the training and the validation sets are loaded into the RAM. After that, random batches are selected to be

loaded into the GPU memory for processing. The training is done using the Mini-batch gradient descent algorithm (with

momentum).

In contrast to this, inference (that is, inference in the Android app) is done using only the CPU, because TensorFlow doesn’t

support smartphone GPUs.

5. BENCHMARK
To create an initial benchmark for the classifier, I used DIGITS (a web interface to the Caffe deep learning library, to try multiple

architectures. The “standard” LeNet architecture (Figure 5) achieved the best accuracy, around 0.8.

I couldn’t find a similar project that didn’t require special hardware, so the processing delay and classification delay benchmarks

had to be created without actual data:

 For the classification delay, my goal was going below 3 seconds, optimally below 200 ms.

 For the overall processing delay, my goal was reaching a delay below 6 seconds, optimally below 500 ms.

The above two values were determined by asking a few people, rounding the responses, and taking the most frequent values.

https://www.ijarnd.com/

Mittal Adarsh, Chadha Srishti; International Journal of Advance Research and Development

© 2019, www.IJARND.com All Rights Reserved Page | 10

6. METHODOLOGY
6.1 Data Preprocessing

The preprocessing done in the “Prepare data” notebook consists of the following steps:

(1) The list of images is randomized

(2) The images are divided into a training set and a validation set

(3) The images are split into square-shaped segments; random noise is used for padding

(4) Each of the segments gets a label, which is “text” if the overlap between the segment and one of the annotations6 is greater

than a threshold, and “no-text” otherwise

There are also some preprocessing steps which are done as the images get loaded into memory before training:

(1) The images are converted to grayscale

(2) The pixel values get transformed to 16-bit floats

(3) The mean pixel value is subtracted

(4) The pixel values get divided by the standard deviation of the pixel values

Note that both the mean pixel value and the standard deviation are constants, and were determined earlier by sampling the

training data.

Figure 4 shows the segments from which the “text” class produced with the final parameter settings. The segment size is 128 px,

the overlap threshold is 500 px².

Fig. 4: Segments from which the “text” class produced with the final parameter settings

During inference (on Android), the latter steps are the same. However, the images are scaled before segmentation using a different

method; instead of padding with random values, the original image is stretched. This does not affect the resulting segments

significantly because the size difference between the original and the stretched image is small.

The preprocessing process has the following adjustable parameters:

 Segment size

 Overlap threshold

 The upper limit on the number of training images

 The upper limit on the number of validation images

7. IMPLEMENTATION

The implementation process can be split into two main stages:

1. The classifier training stage

2. The application development stage

During the first stage, the classifier was trained on the preprocessed training data. This was done in a Jupyter notebook (titled

“Create and freeze graph”), and can be further divided into the following steps:

1. Load both the training and validation images into memory, preprocessing them as described in the previous section

2. Implement helper functions:

a. get_batch(...): Draws a random sample from the training/validation data.

b. fill_feed_dict(...): Creates a feed_dict, which is a Python dictionary that contains all of the data required for a single

training step (a batch of images, their labels, and the learning rate).

3. Define the network architecture and training parameters.

4. Define the loss function, accuracy.

5. Train the network, logging the validation/training loss and the validation accuracy.

6. Plot the logged values.

https://www.ijarnd.com/

Mittal Adarsh, Chadha Srishti; International Journal of Advance Research and Development

© 2019, www.IJARND.com All Rights Reserved Page | 11

7. If the accuracy is not high enough, return to step 3.

8. Save and freeze the trained network.

Fig. 5: Computational graph

The illustration in figure 5 shows the computational graph, which includes the network architecture and also the variables that are

only present during training.

The acronyms can be read as follows:

 FC: Fully connected layer

 Conv: Convolutional layer

 MP: Max pooling layer

The following can be seen by looking at the graph:

 The loss function is mainly composed of the mean cross entropy error.

 Large weights and biases of all four layers are penalized by using weight decay. (The weights are added to the loss function

after they are multiplied by their specific weight decay rates.)

The application development stage can be split into the following steps:

(1) Copy and compile the TensorFlow Android demo

(2) Modify the original application to run the network trained in the previous stage (the most heavily modified files are listed in

the readme)

(3) Implement the call to the Cloud Vision API

(4) Add TTS function

8. REFINEMENT
As mentioned in the Benchmark section, the LeNet architecture trained with Caffe achieved a good accuracy, around 80%. (This

is considered good because around 20% of the positive training examples contain only a single character or just some portion of

a character, and as such are essentially false positives.)

https://www.ijarnd.com/

Mittal Adarsh, Chadha Srishti; International Journal of Advance Research and Development

© 2019, www.IJARND.com All Rights Reserved Page | 12

To get the initial result, this architecture was ported to TensorFlow; the result was the accuracy of around 70%. This was

improved upon by using the following techniques:

 Dynamic learning rate: whenever the loss function stopped decreasing, a learning rate drop was added

 Weight decay: when overfitting was detected (the training and validation losses diverged too much), the weight decay rate

was increased

 Adding dropout to a layer: dropout randomly drops weights in the layer it’s applied to during training and scales the weights

so that the network keeps working during inference. This was later undone because the Android build of TensorFlow doesn’t

support it.

The final TensorFlow model was derived by training in an iterative fashion, adjusting the parameters (e.g. learning rate, weight

decay ratios) based on plots like the one below. The final model has an accuracy of 77%.

Divergence in the following figure indicates overfitting, which can be addressed by intensifying the weight decay, adding

dropout, or reducing the model complexity (e.g. reducing the number of layers), among other techniques.

Fig. 6: A plot of the training/validation losses

9. RESULTS
Model Evaluation and Validation

During development, a validation set was used to evaluate the model. The final architecture and hyperparameters were chosen

because they performed the best among the tried combinations.

For a complete description of the final model and the training process, refer to Figure 5 along with the following list:

 The shape of the filters of the convolutional layers is 5*5.

 The first convolutional layer learns 32 filters, the second learn 64 filters.

 The convolutional layers have a stride of 2, so the resolution of the output matrices is half the resolution of the input matrices.

 Like the convolutional layers, the pooling layers halve the resolution too.

 The weights of the convolutional layers are initialized by sampling a normal distribution with a standard deviation of 10−4.

 The weights of the first and second fully connected layer are initialized by sample a normal distribution with a standard

deviation of 0.04 and 0.1, respectively.

 The first fully connected layer has 512 outputs, the second 2. (The outputs of the latter correspond to the two classes, “text”

and “no-text”.)

 The training runs for 36,000 iterations.

 The learning rate is multiplied by 0.003 when the number of iterations reaches 18,000.

To verify the robustness of the final model, a test was conducted using everyday household objects (Figure 7). The following

observations are based on the results of the test:

 The classifier can reliably detect high contrast text

 Blurry text is ignored, the camera must be focused on successful detection

 False positives are rare but present

 The classifier can detect text that is too far away for the text extractor

10. JUSTIFICATION
Using a Galaxy Note 4 on a 4G network/Wi-Fi, I got the following results:

 The classification delay is about 3 seconds, which is about the same as that of the benchmark

 The processing delay is around 5 seconds, which is better than that of the benchmark

 The per-image classification accuracy

is higher7 than 90%8

https://www.ijarnd.com/

Mittal Adarsh, Chadha Srishti; International Journal of Advance Research and Development

© 2019, www.IJARND.com All Rights Reserved Page | 13

To understand how successful the final application is, it’s also important to know the overall text extraction performance, which

is illustrated in figure 7.

It can be seen that the application is useful for reading labels, but also that it can get confused by hard to read the text (such as

that on the cardboard box), and it can miss text that is too low-contrast compared to its background.

In summary, the application is useful in a limited domain, but to solve the bigger problem (giving visually impaired people

access to written information), different hardware will have to be used (see the Improvement section)usion

10.1 Free-Form Visualization

Figure 7 Examples of text detected/ignored by the application. Each of the objects was tested 3 times; the green boxes mark text

that was read successfully at least 2 times. Orange means at least some words were successfully read at least one time. Red

means the text was consistently ignored.

Fig. 7: Failure cases

From above figure, three failure cases can be clearly identified:

(1) Blurry/low-contrast text (e.g. the text on the porzellan)

(2) Custom fonts (e.g. the Tchibo logo)

(3) Noisy text that isn’t actually meant to be read (e.g. most of the text on the cardboard box)

https://www.ijarnd.com/

Mittal Adarsh, Chadha Srishti; International Journal of Advance Research and Development

© 2019, www.IJARND.com All Rights Reserved Page | 14

10.2 Reflection

The process used for this project can be summarized using the following steps:

1. An initial problem and relevant, public datasets were found

2. The data was downloaded and preprocessed (segmented)

3. A benchmark was created for the classifier

4. The classifier was trained using the data (multiple times, until a good set of parameters, were found)

5. The TensorFlow Android demo was adapted to run the classifier

6. The application was extended so that it can extract text from images using the Google Cloud Vision API

7. Feeding the extracted text to the TTS system was implemented

I found steps 4 and 5 the most difficult, as I had to familiarize myself with the files of the TensorFlow Android demo, which

uses Bazel and the Android NDK, both of which were technologies that I was not familiar with before the project.

As for the most interesting aspects of the project, I’m very glad that I found the COCO and COCO-Text datasets, as I’m sure

they’ll be useful for later projects/experiments. I’m also happy about getting to use TensorFlow, as I believe it will be the deep

learning library in the future.

10.3 Improvement

To achieve the optimal user experience, using more capable hardware9 and moving the text extraction process from the cloud to

the device would be essential. This would reduce the processing time and give access to the outputs of all of the modules of the

text extraction pipeline, which would, in turn, enable the following features:

 User-guided reading (e.g. read the big text first, or read the text the user is pointing at)

 Better support for languages other than English

 Output filtering (e.g. ignore text smaller than some adjustable threshold)

 Passive text detection (auditory cue on text detection, perhaps with additional information encoded in the tone and volume)

The user experience could also be improved significantly by using MXNet, which is a deep learning library that is better

optimized for mobile devices than TensorFlow. The speedup wouldn’t be enough for running text extraction on the device, but

it would reduce the classification delay significantly.

https://www.ijarnd.com/

