
Mittal Adarsh, Chadha Srishti; International Journal of Advance Research and Development

© 2018, www.IJARND.com All Rights Reserved Page | 31

(Volume 3, Issue 11)

Available online at: www.ijarnd.com

Cache performance improvement using software-based approach
Adarsh Mittal1, Srishti Chadha2

1Research Scholar, Nvidia Graphics Pvt Ltd, Bengaluru, Karnataka
2Research Scholar, IBM, Bengaluru, Karnataka

ABSTRACT

Cache usage is a common mechanism for increasing the speed

and performance of memory access and are widely used from

simple microprocessors to the complex multi core-based

designs. It is seen that the cache is not well designed for the

embedded systems as the performance is based on probability

and is not deterministic. It is difficult to guarantee the time a

data will be present or absent in the cache memory. So, it

becomes difficult for the embedded system to use the ability of

cache to increase the performance. Normally, many real-time

systems simply switch off the cache technique and use the

scheduler algorithm based on the worst time memory access.

There is various software stack that provides the advantage of

cache time without the limitation that a hardware-based cache

offers.The paper talks about the different organization and

operations of cache techniques found in generally used

processors, signal processing units and microcontrollers.

Keywords— Memory access improvement, Efficiency,

Hardware-based cache, Software-based cache, Virtual memory

access, Translation, Page access

1. INTRODUCTION
It is desired to have better performance for a system which

requires fast access to the data and instruction sets. In order to

achieve that general-purpose processors have caches that speed

up the computations in general- purpose applications. Cache

memory unit contains a small fraction of a program’s whole data

or instruction set which are explicitly designed to hold the most

important items so at a given probability that will store and

retain the most desired data. The principle in which cache works

is simple i.e. at a given point of time a system is most likely to

access the data and information which it has requested in the

past. This helps architectures to build simple hardware

controllers to improve the performance of an application. In

most cases, it is seen that the catching technique is not suited

for real-time applications. Hence most of the embedded system

applications switch off most of the hardware caches on the

processor. The two important factors that control the general-

purpose systems is the accuracy and performance of a system.

Generally, it is desired that execution time must match the

constraints as they control the flow of data. Variability or

difference in execution time is not acceptable for critical

functions in an airplane flight control system or the system

designed for the antilock braking system in an automobile.

The common problem with the traditional hardware-based

caches in real-time systems is that there is a high probability

that the cache may not contain the desired data at any specific

time or moment, although it may allow a performance

improvement in the system. Access becomes faster when data

is available in the cache. If the data is not available in the cache,

access becomes quite slow and difficult. Typically, for the first

time when the desired item is generally requested, it might not

be present in the cache. Further with the continuous accesses

for that particular item are likely to find it in the cache, so

access becomes faster. But since the different memory requests

on might move this item from cache it is likely that the

important data is replaced in the cache. Study of the presence

of an item in the cache has become very difficult in recent

times. So, much real-time application disables caching

technique to enable analysis based on the worst-case execution

time. To store the lines in the cache might be a solution for

hardware which supports it. System software has the

functionality to load data and instructions into the cache and

command the cache for disabling their replacement so that the

data is available. Once data and instructions are pinned to the

cache, it is not susceptible to dynamic identification which is

the major drawback of this approach. A flexible mechanism or

application is expected which allows instructions to be pinned

so that they are not prone to changes.

2. COMMON MEMORY CACHE
Cache is generally used to increase the performance of access

to storage devices mainly in disk drives, tape, and sub-memory

units. The principle of working is based on the locality of

reference i.e. any applications to reference a small amount of

data within a fixed interval of time. The devices which are built

by a technology that has a fixed time of access and cost, where

any fast technologies will have a slower access time and high

cost per storage unit compared to slower technologies. A cache

memory system is built from a technology which is normally

faster than that of usual storage devices and only needs to be

large enough to hold the working set of the instructions that an

application needs. These are the set of data items and

instructions of the application are used to perform its

computations for performing a task.

2.1 Fundamental cache operations

There are two important parts of a general cache - data and the

tags. Usually, when a cache is small in size than an address

space, there is a high chance that the particular requested data

is not accessible or stored in the cache. There is a mechanism

to find out whether any particular data is available in cache or

not. The tags, in particular, are a list of valid entries in the cache

https://www.ijarnd.com/
https://www.ijarnd.com/?utm_source=pdf&utm_medium=edition&utm_campaign=OmAkSols&utm_term=V3I11-1171

Mittal Adarsh, Chadha Srishti; International Journal of Advance Research and Development

© 2018, www.IJARND.com All Rights Reserved Page | 32

which are available for this purpose, each one is associated per

data entry. Hence every tag entry can be used to identify the

contents of its related data entry. Virtually, many of the

hardware memory caches operate in this way, one indicates the

cache and the associated tag entry indicates the information

stored in the cache. Whenever a tag matches, i.e. if it

corresponds to the valid requested data, then the data in the

table of data entry is read out. Cache lookup concept can be

divided into 2 parts: fully associative mechanism and direct-

mapped mechanism. In the fully associative lookup, the cache

hardware is small. Data can be put in the cache without any

bound of location; the available tag field can identify the content

of the data. A simple search algorithm checks the tag of every

data available in the cache. If any data matches the tag of the

requested address, then it is called cache hit which means the

cache contains the requested data. In a direct-mapped lookup

system, a given data can only be available in one cache entry

which is usually determined by a subset address although it has

the most common index as a low-order bit of tag field.

2.2 Basic Cache Architecture
The two integral part of a cache is Cache tags and cache data.

Individual data entry in a memory system is termed as cache

block or cache line. The tag data entries generally identify the

contents of their corresponding data entry.

2.3 Associative Lookup Operation

A fully associative lookup operation is commonly named as

Content-addressable memory (CAM). Any entry which has the

same tag as the lookup address matches irrespective of its

position in the cache system. This method helps in reducing

cache contention but look up table (LUT) is large and hence

become expensive and difficult to apply as the tag of every

entry is checked for a match with the lookup table address. The

lower bits of the address data which are not the part of tag match

determine what location of the cache line to be sent to the

system requesting the data. In associative lookup scheme, there

is n number of tag matches, where n is the no. of the cache line

that is there in the system. In this system only one tag match is

acceptable because the data which is requested can only be

found in any location: Directly mapped cache is fast to search

as there can only be one place for any particular information.

A set associative cache is intended for fast lookup based search

and lower contention[1].

2.4 Cache Architecture Organization

Different cache organizations are available based on the cache

indexing and tag information. The cache organization is a

limited database, and the address of the physical or virtual data

corresponds to the key of the database. Most of the instruction

and data caches are mapped directly. For specialized cache

structures, full associativity is reserved [2]. Indirectly mapped

caches, a small portion of the key can be used for choosing a

data set. There exists one cache at a given index in case of

directly mapped caches. More than one cache lines or multi-

line system exist in case of set-associative caches. If anyone of

the tags matches the key, the specific cache line is read out as

the key might be a virtual or a physical address.

2.4.1 Physically indexed, physically tagged architecture: In

this type of system cache model, the virtual address should be

translated before the cache can be accessed as the system cache

is always indexed and tagged with its physical address location.

The cache can be easily controlled by a hardware-based

mechanism in this case and the operating system is free from

the responsibility of cache management. The disadvantage of

this design is that address translation is in the critical path of

the design. When clock speed increases, it becomes an issue.

Fig. 1: Physically indexed, physically tagged architecture

2.4.2 Virtually indexed, virtually tagged architecture: In

this system, the cache is indexed and tagged by virtual Address

rather than real address. So there is no need to address

translation in the process and it is the most important

advantage. There is no need for Translation buffer and if used,

that only needs to be requested while a requested data is absent

in the cache location. On a cache miss, the virtual address

should be applied to load the data from a physical memory

location. The usage of TLB can speed up the process if the

mapping is present in TLB. The size of the TLB can be bigger

if it’s not in a critical path, but this will result in slower access

time, a larger TLB contains lots of mapping information. The

virtually indexed, virtually tagged organization is illustrated in

figure 2.

2.5 The advantage and disadvantage of caching

Cache has the most important data close to the processor which

helps in increasing the speed of processing of data. The

advantage of placement is applied in 2 ways: While when an

item is referenced, it is placed inside the cache memory unit so

if the item is once again referenced in a later time, it might have

the probability to be available inside the cache, as a result, this

access the system becomes faster. The main idea of a program

is to reuse data in later stages of the pipeline. When a data is

picked, the nearby data is also copied into the cache. A cache

line is typically larger than a single data set. So, if an

application uses data near the original data, the data will be

available in the cache. Generally, a program tries to reference

items that are placed in nearby locations and it has encountered

in the past. Usually, the data found in the cache: items are not

usually replaced after one new encounter, and thus programs

can have a good efficiency in case of re-reference of data and

instruction

The cache system has the most important data an instruction

and any reference to an object which is not usually present in

the cache. The execution path of a typical program is based on

input data which is not an easy task to predict.

The problem with having these set of architecture is that, in the

steady-state, the cache is full of important instruction, and any

reference to an object that is not already in the cache replaces

some important data that has been accessed in the past. Because

the execution path in a typical program is based partly on the

input data, it is difficult to predict exactly which instruction

needs to be referenced.

Since the data reference concept of a program is based on the

data values; thus it is not ideal to predict exactly about the

https://www.ijarnd.com/

Mittal Adarsh, Chadha Srishti; International Journal of Advance Research and Development

© 2018, www.IJARND.com All Rights Reserved Page | 33

content program will need in later stages. It is almost

impossible to decide about the time the particular data that will

last in the cache before it is replaced by other data. It is very

hard and nondeterministic to predict the steady cache contents

and therefore it is very difficult to detect the execution time of

any instruction, In real-time systems, precision is one of the

major issues [3].

3. SOFTWARE CONTROLLED CACHE

DEVELOPMENT
Usually, two important primary cache architecture exists for

real-time processing. The first method is used in digital signal

processors. Use SRAMs forms a completely separate space

from main memory. Instructions and data which are usually

stored appear in these memories when software relocates them

there explicitly.

A software-based virtual cache has made the transition to real-

time embedded systems in most recent times. Software-based

cache system generally allows the software aspect to determine

on a cache line basis, whether or not to reallocate the cache

instructions and data which are very important and relevant in

real-time systems. For example, the initialization part of the

code of real-time systems would never be cached on priority

but the most reoccurrence body part of the code is always

cached on a higher priority. It is seen that the loss of efficiency

for not caching the code is encountered during a long execution

time as the initialization.

Fig. 2: Virtually indexed, virtually tagged architecture

3.1. Separate Space for SRAM

Software-based execution system views a namespace that

ranges several different storage types. This software is

completely aware of the different storage types available in the

e-market and hence are smart enough to make intelligent

choices regarding space where each function or data object

should be residing for best performance. This memory map

specifically contains two on-chip SRAM arrays available in the

low region of the address space. On the very top of the space of

address, DRAM array exists, which is usually placed off-chip

in this example. The middle part of the memory map contains

the peripherals and the ROM array as shown in Table 1.

Assuming, Memory system areas have the following sizes and

correspond to the following ranges in the address space [5].

Table 1: Memory map with devices and size

Address location Size (Kbytes) Device

0x0000 0x0FFF 4 KBytes SRAM-0

0x1000 0x1FFF 4 KBytes SRAM-1

0x2000 0x3FFF 8 KBytes invalid

0x6000 0x6FFF 4 KBytes invalid

0x4000 0x5FFF 8 KBytes ROM

0x8000 0xFFFF 32 KBytes RAM

Here the static value of the function can’t be applied to access

the specified function. Next set of invocations of functions

have to apply the address 0x1000 instead of the function which

is located in the system of ROM, otherwise, those invocations

have to first access the ROM version of the same function but

not the cached one. This software-managed cache system

works very fast and efficiently.

In real-time systems, address space protection is a new issue.

For the purpose of address space protection, providing access

to the system arrays via some virtual memory mechanism used

in the real-time system, a memory-management system unit

and a translation buffer is quite effective. This arrangement of

the system requires a little different from general-purpose

systems. Firstly, the complexity of memory management

system increases because there is more than a single DRAM

array. The management of the TLB needs to be more

deterministic than it is in typical approach based systems where

random replacement was done.

For interface, a DSP-based operating system has to enable

several changes on malloc() function, each of which allocates

a different virtual region to the process which maps to a

separate area of the namespace. An example below shows a set

of functions that a DSP based Operating System can export

have been mentioned below:

void *sram0_malloc(size_t size);

void *rom_malloc(addr_t start, size_t size);

void *sram1_malloc(size_t size);

void *dram_malloc(size_t size) rom_malloc() function allots

a region within the process address space which is mapped to

part of the ROM array. rom_malloc() function requires the

software to specify a region in the storage device. This

memory-allocation interface should have the required effect of

allowing a process to make device-specific decisions of

improvement. It protects the virtual address space of processes

as well.

4. CONCLUSION
This paper discusses efficient software-oriented cache

management schemes for real-time embedded systems by make

use of SRAM caches present on-chip. The paper addresses

general-purpose caches with DSP caches which share the same

namespace similar system used in DRAMs. The address-space

protection is provided by a virtual memory technique.

Implementation of such a virtual memory layer and address

translation adds an extra overhead that can be removed if user-

level processes are executed directly on top of memory units.

5. REFERENCES
[1] N. P. Jouppi, “Cache write policies and performance” In

Proc. 20th Annual International Symposium on Computer

Architecture (ISCA-20), May 1993, pp. 191 -201.

https://www.ijarnd.com/

Mittal Adarsh, Chadha Srishti; International Journal of Advance Research and Development

© 2018, www.IJARND.com All Rights Reserved Page | 34

[2] B.L. Jacob and T.N. Mudge, “A look at several memory-

management units, TLB-refill mechanisms, and page table

organizations.” In Proc. Eighth Int’l Conf. on Architectural

Support for Programming Languages and Operating

Systems (ASPLOS- 8), San Jose, CA, October 1998, pp

295-306

[3] P.J. Denning. “Working Sets Past and Present.” IEEE

Transactions on Software Engineering, vol. 6, no. 1, pp 64-

84, January 1980

[4] B.L. Jacob, ”Software-managed caches: Architectural

support for real-time enabled systems.” In CASE958:

Workshop on Compiler and Architecture Support for

Embedded Systems, Washington DC.

[5] B.L. Jacob and T.N. Mudge, “Software managed address

translation.” In Proc. Third International Symposium on

High-Performance Computer Architecture (HPCA-3)

[6] Qian Yu, “Characterizing the Rate memory Trade-off in

Cache network within a factor of 2”, IEEE 2018

[7] Jun Shiomi , “ Maximizing energy efficiency of on chip

caches Exploiting Hybrid Memory Structure”, 2018 IEEE

Conference on Network Softwarization and Workshops.

https://www.ijarnd.com/

