
Mavhemwa Prudence M, Nyangani Ignatius; International Journal of Advance Research and Development

© 2018, www.IJARND.com All Rights Reserved Page | 49

(Volume 3, Issue 10)

Available online at: www.ijarnd.com

Uniform spatial subdivision to improve Boids Algorithm in a

gaming environment

Prudence M Mavhemwa, Ignatius Nyangani

Student, Bindura University of Science Education, Bindura, Zimbabwe

ABSTRACT

Video games often make use of simulation to represent part of

real world phenomenon; be it simulating a typical crowd

behavior (e.g. chaos, rioting), or particle simulation (e.g. fire,

smoke) and many other uses. Games have one common

characteristic, i.e. they are interactive real-time systems,

meaning to say processes that run in these applications must

execute within a limited time threshold for the application to be

called successful. The Boids algorithm is often used in these

applications for realistic simulation of flocking type of

behavior of virtual crowds. However, simulation of crowds in

real-time using the algorithm is computationally time

consuming, due to how the algorithm evaluates the whole

crowd when searching for possible nearest neighbors for each

agent in the simulation. There are several approaches to

improve performance of these flocking simulations in real-

time, and in this document we discuss some of those methods

that have been applied to the Boids algorithm. We further

implement and test one of these performance optimization

methods, and use benchmarking results to compare

performance of the method versus the boids algorithms’ brute

force neighborhood gathering approach.

Keywords— CPU, GPU, GPGPU, Interactive systems, Agent,

Crowd, Simulation model, 2D, 3D, Crowd simulation, AI

1. INTRODUCTION
Several algorithms have been developed to simulate the

coordinated motion of a group of agents, and most of them have

originated from swarm intelligence. They are most known as

flocking algorithms, and have been widely implemented in video

games to simulate the complex flocking behavior of interacting

agents such as soldiers and monsters in virtual environments.

The first flocking-behavior simulation was done on a computer

by Craig W. Reynolds in 1986, and called his simulation

program “Birds” (M.Sajwan, 2014). He coined the name ‘boid’

to represent each agent in his simulation, hence the name of the

algorithm. The algorithm tries to simulate complex flocking

behavior by implementing three main heuristic rules that each

boid must obey which are:

 Cohesion: Cohere with other characters by steering towards

the average position of the local neighborhood.

 Alignment: Steer towards the average direction or heading of

local flock mates.

 Separation: Avoid collision and crowding with other local

flock mates.

When combined, these three basic rules can provide a realistic

flocking simulation of a group of agents. Unfortunately, the

Boids algorithm can be very computer-intensive when very large

groups are considered, mainly due to the process of evaluating

possible nearest neighbors (Reynolds, 1987). By using the

algorithm in real-time applications such as video games, the cost

of simulating large crowds can significantly affect application’s

performance.

1.1 Problem Statement

Real-time simulation of virtual crowds has always been a big

challenge, mainly due to the limited amount of computational

resources available on commercial CPUs (Yilmaz, 2010). In the

boids simulation model, for each boid to make a decision such

as to move in space, it must first determine the possible nearest

neighbors that it might (for instance) collide with. The problem

is how one boid determines its proximate neighbors out of a big

population of boids, whilst using limited computational

resources that are inherent in real-time systems. The brute force

approach of determining nearest neighbors makes it infeasible

for the boids algorithm to simulate large crowds in real-time on

most consumer CPUs. In real-time interactive systems, time is a

limited resource and processes must execute within some given

time threshold in-order for the system to be called successful

(Joselli, Passos, Silva Junior, Zamith, & Clua, 2012). Thus, some

performance optimization methods have to be explored in order

to minimize the total simulation time so as to meet system’s time

constraints.

1.2 Objective

To determine if implementation of uniform spatial subdivision

to the boids algorithm may speed up flocking simulation of large

crowd sizes in real-time.

2. LITERATURE REVIEW
The boids algorithm is one of the most commonly used

algorithms in simulating crowd behavior, and has been used as a

back-borne for most of the algorithms used in crowd simulation

(Sajwan, Gosain, & Surani, 2014). However, naïve

implementation of the boids algorithm has been shown to have a

complexity of O(n2) as a direct result of near-neighbor queries

(Silva, Lages, & Chaimowicz, 2009). This section will address

how some performance optimization methods have been used to

accelerate performance of the boids algorithm in simulating

large virtual crowds with emphasis on the effectiveness of these

strategies in real time applications.

https://www.ijarnd.com/
https://www.ijarnd.com/?utm_source=pdf&utm_medium=edition&utm_campaign=OmAkSols&utm_term=V3I10-1144

Mavhemwa Prudence M, Nyangani Ignatius; International Journal of Advance Research and Development

© 2018, www.IJARND.com All Rights Reserved Page | 50

2.1 Crowd Simulation Models

Generally, all crowd simulation models can be classified under

macroscopic and microscopic models, depending on their

properties and approach in simulating crowds (Afanasyeva &

Afanasyeva, 2014). Macroscopic models treat the crowd as a

whole and use flows to characterize crowd behavior and

movement, whilst Microscopic models consider movement and

behavior individually for each agent (Sun, 2014).

2.1.1 Macroscopic Models: Macroscopic models are based on

observed flow of human motion in different scenarios, for

instance, panic or a crowd of people evacuating a building. As

such, these models are used to simulate human behavior as an

aggregate flow or in groups and avoids per-agent

processing(Treuille, Cooper, & Popović, 2006). Despite the

performance benefits that this method offers, it lacks the

flexibility of a full agent-based approach since decisions are

made at global level rather than per individual.

2.1.2 Microscopic Models: In microscopic models, each agent

in the simulation is regarded as an independent decision making

entity. As the simulation progresses, agents continuously

examine their surrounding environment, and then each agent will

then make its own decisions depending on the current situation

(Afanasyeva & Afanasyeva, 2014). These decisions will then be

used to drive the agent’s individual characteristics such as

position and velocity (Fachada, Lopes, Martins, & Rosa, 2016).

However, since each agent is an independent entity that can

make its own decisions, this also increases the amount of

computations that have to be performed per agent in each

simulation run.

2.1.2.1 Boids Model: The algorithm in this model is able to

simulate complex flocking behavior as a result of coordinated

motion by implementing three simple rules that define the

steering behavior of each boid. The following are the three rules

as described earlier Separation, Alignment, and Cohesion.

The separation rule simulates collision avoidance from nearby

flock mates by calculating a force, such that if applied to a boid’s

velocity, the force will allow a boid to get away from close

agents. A threshold distance of separation is used to determine if

the other boids in the flock are close enough to get away from.

Alignment rule allows a boid to steer towards the average

velocity or heading of the flock, essentially making a boid to

steer towards the nearest boids. Nearest boids are determined by

a threshold alignment distance, and the average of their velocities

is calculated. Then the difference between the average velocity

and the current boid’s velocity are measured and the force is

added to the direction of the vector difference of these two

velocities.

The cohesion rule allows a boid to get closer to the center of

neighbor boids, and this rule can be seen as a type of attraction

rule. The center of neighbors is calculated by adding all their

positions and then dividing them by the number of the neighbors.

A generalized pseudo code for the naïve boids algorithm is

presented below (Weiss Robin M, 2010)

create N boid agents and initialize with random position and

velocity

for each boid:

 vAvoid = collision avoidance force

vMatching = velocity matching force

vCentering = flock centering force

boid.velocity += (c1 * vAvoid) + (c2 * vMatching) +

(c3 * vCentering)

boid.position += boid.velocity

end for

The terms c1, c2 and c3 represent the weights used to weigh the

forces, depending on the type of agent being simulated. For

instance, when simulating the schooling behavior of fish, a high

weight on the cohesion force will be used. Humans however,

might need a small weight of the cohesion force since human

movement tend to be more independent in nature, unless maybe

simulating rioting scenarios where people seem to move

cohesively in groups.

Other than these basic rules, several other rules can be added to

enhance the visual results of the simulation (C. W. Reynolds,

n.d.-a). The advantage of the boids algorithm over most of

contemporary simulation algorithms is its ease of

implementation whilst providing highly realistic results

(Afanasyeva & Afanasyeva, 2014). Since it is a microscopic

model, these three forces are calculated independently of other

agents in a simulation. This individuality allows simulation of

more complex behavior since each agent reacts to its surrounding

environment basing on its current situation.

Nevertheless, the boids algorithm has its own shortcomings. The

straightforward implementation of the boids algorithm has an

asymptotic complexity of O(n2) (Joselli et al., 2012). For small

flock a size, the computational cost is not of much concern but

when the size of the flock starts to increase, visualization of the

simulation in real-time becomes very expensive. Thus, applying

the algorithm to simulate crowds in real-time applications

becomes useless.

2.2 Boids Algorithm Performance Optimization

The major bottleneck of the naïve boids algorithm is the cost of

performing near-neighbor queries in-order to gather separation,

cohesion and alignment information (C. Reynolds, 1983), (Silva

et al., 2009). For each agent in the boids simulation to determine

its proximate neighbors, it has to compare its distance from every

other agent’s position in the scene in-order to determine the

number of agents that are within its neighborhood (Yilmaz,

2010). For very small population sizes, the computational time

is not of much concern. However, as the population size starts to

increase to several hundreds or thousands of agents, these

proximity costs will ultimately dominate all other costs in the

simulation, regardless of how fast each proximity query can be

done (Reynolds Craig W, 2000). This makes the naïve approach

useless in real-time interactive environments.

2.2.1 Parallel Processing: Parallel processing is a field of

computation where several processors are used to solve parts of

a given problem in parallel. Parallelism of a model can be

achieved by decomposing the model into several components,

such that each component can be independently processed by

logical processors in a parallel manner (Fachada et al., 2016).

Several researchers have used parallel processing to speed up the

boids algorithm in simulating massive crowd sizes, both on the

CPU and the GPU. The former approach uses multi-threading as

a way of performing these computations on different processor

cores, whilst the latter uses either GPGPU or modern

heterogeneous systems such as NVidia’s Compute Unit Device

Architecture (CUDA) or Open Computing Language (OpenCL)

(Yilmaz, 2010), (Drozd, 2015), (Fachada et al., 2016).

https://www.ijarnd.com/

Mavhemwa Prudence M, Nyangani Ignatius; International Journal of Advance Research and Development

© 2018, www.IJARND.com All Rights Reserved Page | 51

The boids algorithm was also used to simulate swarming

behavior by (Drozd, 2015), in which agents used information

from their surrounding environment to perform given tasks such

as food foraging. He showed that by exploiting multicore CPUs

for parallel processing, he could simulate signal propagation for

over 100000 agents at interactive frame rates.

The computational power of GPUs and their ability to run non

graphical algorithms through GPGPU has motivated other

researchers to exploit parallel programming to speed up crowd

simulation using the boids algorithm. Modern GPUs have been

shown to run algorithms 10 to 100 times faster than CPUs

(Relations, n.d.). (Yilmaz, 2010) used CUDA technology as the

general purpose parallel programming tool to write the parallel

boids algorithm for the NVidia GTX 295 GPU. He showed that

it is possible to achieve two orders of magnitude speedups using

CUDA parallel computing architecture as compared to serial

code running on the CPU.

Another usage of parallel processing in the boids algorithm was

implemented by (Zhou, 2004). His main goal was to minimize

the quadratic complexity and to increase the number of agents in

the simulation. In their implementation, they used a computer

cluster and each processor had to communicate with other nearby

processors to query for near-neighbor information. Using this

approach, they were able to simulate up to 512 individual boids

at interactive frame rates.

Despite the performance improvements that parallelism offers to

the boids algorithm, it also presents several problems; mainly,

the effective way in which the model must be represented in

order for parallelism to work (Fachada et al., 2016). Parallel

processing is a divide and conquer technique, in which a problem

in decomposed into several sub problems that can be solved in

parallel. Therefore in order to use parallel processing on a model,

there is need to decompose the model into several components

that can be processed independently. Fachada argued that model

decomposition can involuntarily introduce changes which can

modify the model dynamic due to implementation details, thus

failing to reproduce same visual results or behavior as the

original model.

2.2.2 Occlusion Culling: (Silva et al., 2009) introduced an

approach to minimize the costs of near neighbor queries in the

boids algorithm using estimated self-occlusion. He defined self-

occlusion as ‘the possible occlusion caused by a boid in view of

the other boids during flight’. The main idea was that boids must

only query near neighbor information from other boids that are

visible from their field of view, so as to perform separation,

alignment and cohesion calculations. It is shown in Figure 1

below.

Fig. 1: Self-occlusion. Agents that fall within an agent field

of view and un-occluded by other agents are considered as

neighbors (Silva et al., 2009)

Using this approach, the number of neighbors considered in the

computations is significantly reduced as a result of neglecting

boids that would be invisible due to the presence of other boids.

The implementation of the boids model and the visibility culling

algorithm was done on the GPU using both GPGPU and CUDA.

Despite being efficient at simulating large flock sizes, the

method relies on offloading visibility computations to the GPU

for performance speed-ups. This limits the applicability of this

technique in some computers that have CPUs only as a

computational device.

2.2.3 Spatial Subdivision

Spatial subdivision can be defined as the structured partitioning

of geometry (Rhodes, 2014). It n is a general optimization

technique that has been applied to several computational

problems including ray tracing (Havran, 2004) and cloth

simulation (Ho, Geoff, & Fabio, 2012). The basic idea behind

spatial subdivision is to subdivide a given geometrical space into

smaller sub-spaces or cells, which can then be used to speed up

proximity or locality queries (C. Reynolds, 2006).Figure 2 below

shows the Spatial Subdivision technique.

Fig. 2: Illustration of 2D space decomposition by using a

quadtree. Points in 2D space (top left), subdivided 2D space

(top right), resulting quadtree structure (bottom) (Drozd,

2015)

Generally, spatial subdivision structures can be categorized into

two sub categories; object independent structures and object

dependent structures (Teschner, Detection, & Response, 1976).

2.2.3.1 Object independent spatial structures: Object

independent spatial structures do not take into account the

distribution of the objects in space. These structures divide a

given space independent of object distribution, and are

considered to be the simplest spatial structures. Examples of

object independent structures are regular grids and bin-lattice

method.

2.2.3.2 Bin-Lattice Spatial Subdivision: In this method, a

region of space is subdivided into smaller boxes called bins (C.

Reynolds, 2006). At the beginning of the simulation, agents are

distributed into these bins depending on their initial position.

Every time an agent moves from its current position to the next

https://www.ijarnd.com/

Mavhemwa Prudence M, Nyangani Ignatius; International Journal of Advance Research and Development

© 2018, www.IJARND.com All Rights Reserved Page | 52

position, it checks if it is still inside its allocated bin. If the agent

has moved to another bin, it updates its bin membership to the

current new bin. All the bins that intersect with the agent’s

spherical neighborhood become the current search space, as

such, near neighbor queries will be limited to those bins.

Using this type of optimization structure, Reynolds was able to

reduce the simulation complexity from O(n2) to linear O (kn).

This was largely due to a constant bounded number of agents k

within each boids’ radius of influence that were considered as

near neighbors, thus, avoiding a boid to evaluate the whole

population. However, this complexity has been shown to be

highly dependent on the maximum density of each grid cell,

which could be high if the simulated environment is very big and

condensed (Joselli et al., 2009). Reynolds showed that by using

bin-lattice subdivision technique on a flock size of 1000

simulated birds, performing locality queries was about 16 times

faster than the naïve implementation.

2.2.3.2 Uniform Spatial Subdivision: The main idea behind

uniform spatial subdivision is to partition the space into many

uniform cells, and then perform tests only for primitive pairs

belonging to the same cell (Ho et al., 2012). The resulting data

structure is often referred to as a uniform or regular grid. As the

space is divided into smaller chunks and computation are limited

to a single cell only, selecting the possible near neighbors will

avoid the O(n2) complexity (Silva et al., 2009).

The major advantage of using a uniform grid is that the grid

doesn’t change over the simulation process, thus, it has a

constant cost to build as compared to other recursive structures

such as quadtrees (Silva et al., 2009). Despite recursive

structures being more efficient in most scenarios, uniform grids

are much simpler and less complex to construct and manage.

However, regularity of the grid does not allow the structure to

adapt with distribution of objects in a scene (Havran, 2004).

2.2.3.3 Object dependent spatial structures: Object dependent

spatial structures consider the distribution of objects in space,

which result in irregular subdivision. These type of structures

,also known as hierarchical structures, partition a given space

into several subspaces, taking into account the distribution of

objects in a scene (Hughes et al., 2013). By taking into account

object distribution in a given space, hierarchical structure results

in a non-uniform subdivided space; areas where objects are

densely populated is subdivided the most as compared to other

areas with fewer objects. Under these we have

Quadtrees(Lu,2014), (Bennet 2013) and (Devlin,2016) and

Octrees(Samet ,1988) , (Pantazopoulos & Tzafestas, 2002) and

(Hughex et-al ,2013).

Using this data structure has the advantage of eliminating large

portions of the flock from near neighbor consideration (pruning).

Thus when used for near neighbor queries, the structure may

speed up computations by orders of magnitude from the naïve

approach. However, Devlin’s implementation was inefficient

because the quadtree had to be recreated in each simulation run.

He proposed a solution to this problem in which a tree would be

saved but this approach can be complex and expensive to

implement in real-time, by considering the time cost of building

the structure with respect to the crowd size that is represents.

Octrees have been used to speed up a flocking boids simulation

by (Drozd, 2015). His implementation was based on signal-

driven evolving autonomous agents using an asynchronous

evolutionary algorithm. The algorithm was based on signal

propagation, and an aggregate signal transmitted by all other

boids in the simulation is calculated by each boid, which can lead

to an O(n2) complexity if naïve algorithm was used. Similar to

(Devlin, 2016), each simulation step began by constructing the

tree from scratch, and performing near neighbor queries for each

agent by traversing up the constructed tree. He noted that his

algorithm was a few orders of magnitude faster than naive

implementation. Regardless of the octree improving

performance of the flocking simulation, octrees are just 3D

versions of quadtrees and suffer from the same limitations, such

as tree balancing and frequent re-construction. Each simulation

step required that the tree be reconstructed, which may be

inefficient for very large crowds.

2.3 Challenges of using uniform grids

Uniform grids has a lot of advantages when used as an

acceleration structure; mainly its constant cost to build and

simplicity of implementation(Devlin, 2016) and (Drozd, 2015).

However, the manner in which objects are distributed over the

grid is a major determination of success of this structure

(Rhodes, 2014) . The worst case result when all agents in the

population are crammed within a single cell on the grid. This

means that the whole population size (n) will be evaluated by

each boid in that cell during near-neighbor querying, thus

leading to the same evaluation as the O(n2) brute force approach.

Possible solutions to this problem have been proposed by

researchers; notably (Havran, 2004) proposed to recursively

subdivide the cell that has most objects, so that it can be further

broken down into smaller cells. However, considering the fact

that boids are dynamic and the whole population might move to

another single cell, this means that the recursive subdivision

process must also be done on that cell to break it into smaller

cells. As a result, there would be frequent subdivision which may

result in a dense grid which may be difficult to manage memory

wise.

2.4 Conclusion

The researchers have presented and evaluated some of the

performance optimization techniques that have been applied to

the boids algorithm. The researchers are going to make use of a

uniform grid in order to speed the boids algorithm in simulating

a virtual crowd. However, performance of uniform grids have

been shown to be affected by irregular allocation of objects

across its cells, which may lead to the same evaluation as the

naïve algorithm. To counter this limitation, the researchers are

going to use a goal driven boids simulation, in which a boid is

driven by a set of goals that avoid it from moving into cells that

are already densely allocated. This will greatly reduce the

possibility of occurrence of a worst case scenario, whilst

maintaining the structure of the grid as compared to the recursive

cell-subdivision solution.

3. RESEARCH DESIGN AND METHODOLOGY
The researchers used a mixed methodology which includes the

modeling of the uniform grid algorithm, simulation of a crowd

using the algorithm and an experiment to test the algorithm using

a set of parameters. The simulation parameter that was varied

during the experiment was the input size (i.e. crowd size), and

the researcher aimed to describe the variation of the algorithm

output under the condition that was hypothesized to reflect

variation.

3.1 Crowd simulation design framework

The crowd was represented as a collection of individual

humanoid agents (boids) that can interact on their own, and also

to the user’s (game player) inputs. Uniform spatial subdivision

https://www.ijarnd.com/

Mavhemwa Prudence M, Nyangani Ignatius; International Journal of Advance Research and Development

© 2018, www.IJARND.com All Rights Reserved Page | 53

concept was used to decompose the game world into smaller

regular cells, which were subsequently used as input to the boids

algorithm in order to speed up near-neighbor queries during the

simulation.

The game world was represented as a rectangular 3D mesh

covering every object in a modeled game environment. The

subdivision process was done using a 3D authoring tool, and the

resulting grid of uniformly-subdivided cells was stored in an

array as a collection of small bounding boxes of those cells.

Thus, crowd simulation design was comprised of two parts; the

preprocessing of scene to create a uniform grid and the actual

utilization of that grid as an optimization structure during the

simulation.

3.1.1 Scene pre-processing: The subdivision process was not

done algorithmically, but was done manually through modeling

in a 3D authoring tool called Blender. This was done during the

scene modelling stage when the actual game objects were

created. The output of the modeling process (uniform grid mesh)

was exported into a game engine, and then used to extract

geometric information that was used for the construction of a

uniform grid of 3D axis-aligned bounding boxes. Lastly,

simulation was carried out by allocating the boids to cells on the

grid basing on their position in space, and allocating them

random goals.

3.1.2 Creation of Uniform Grid: In Blender, the world object

is represented as a huge cubic 3D mesh covering all other objects

in the scene as shown in Figure 3 below.

Fig. 3: A prototype game environment scene with buildings

(snapshot taken from blender)

.

Fig. 4: The yellow outlined box shows the rectangular world

mesh covering all objects in the game scene (snapshot taken

from blender)

Fig. 5: A subdivided world mesh giving a regular grid of cell

meshes over the scene (snapshot taken from blender)

Uniform subdivision was done by editing the 3D world mesh

using Blender’s mesh editing tools, specifically the loop-cut tool

which is often used to add uniformly spaced edges on a mesh.

After the loops are added to the world mesh, the small cells

marked by the added ridges were then split into independent

objects from the main world mesh. Each cell mesh was then

centered about its own geometry in the scene, and shared the

same identifier as the main world object, as shown above. These

subdivided meshes were used as a guide for representing the

uniform grid in the game engine.

After the scene was modelled and saved, it was then exported

into the Irrlicht game engine where the actual 3D bounding boxes

were extracted from the subdivided cubic meshes’ geometry. In

Irrlicht, each mesh is imported as a scene node and added to the

collection of other scene nodes called the scene graph, and each

scene node has its own bounding box automatically generated by

the engine when the node is created. All the nodes that represent

a cell in the grid are given a same identifier to distinguish them

from all other nodes in the scene graph, and to identify them for

pre-processing.

The extracted bounding boxes were subsequently stored in an

array and the cubic meshes were removed from the scene graph.

Thus, the uniform grid was represented as an array of 3D axis-

aligned bounding boxes extracted from the cell meshes, not the

actual mesh themselves. This pre-processing step was done once

before the simulation process, and the grid size remains constant

throughout the simulation process

3.1.3 Cell and goals allocation: The distribution of objects

using a uniform grid has a severe impact on the grid’s

performance, and to achieve optimal performance, each cell in

the grid must contain the same number of objects as all other

cells (Rhodes,2014). To avoid irregular allocation of boids over

the uniform grid, a cell and goal allocation algorithm was used

to equally distribute the crowd to the cells and allocate them

goals in those cells. The maximum capacity that each cell can

hold was achieved by dividing the crowd size with the number

of cells in the grid. The cell allocation algorithm was

subsequently used to fill each cell up to maximum capacity and

move on to the next cell recursively. Maximum capacity is

calculated as follows:

maxCapacity = crowdSize/GridSize

The goals are just a set of 3D positions that were located inside

the boid’s allocated cell. These positions help the boid to

randomly navigate throughout the virtual environment. Goals are

extracted from ‘empty’ scene objects in the game scene that were

designated as goal nodes during the scene modelling process;

they just contain 3d position information, a name and an identity

to uniquely identify them.

Fig. 6: The orange dots represents the ‘empty’ objects that

are used to represent the goals of the agents

https://www.ijarnd.com/

Mavhemwa Prudence M, Nyangani Ignatius; International Journal of Advance Research and Development

© 2018, www.IJARND.com All Rights Reserved Page | 54

A boid continually steer towards its goal taking into

consideration the separation, alignment and cohesion forces. If a

goal is reached, another goal is randomly chosen in that cell and

set as the current goal. Goal setting simulates random movement

as usually seen in human crowds (Szymanezyk, Duckett, &

Dickinson, 2012).

3.2 Boids Algorithm and Utilization of the Uniform Grid an

Optimization Structure

Since the major goal of this research is to determine if the

implementation of spatial subdivision can speed up crowd

simulation using the boids algorithm, the researchers

implemented two different algorithms; the naïve neighborhood

gathering approach of the original boids algorithm and a

modified algorithm which used the uniform grid as

neighborhood gathering structure. The runtimes of these

algorithms were then measured and compared against each other

to determine the most effective approach. The boids algorithm

was adapted from (Shiffman, 2016).

3.2.1 The naïve implementation: The naïve approach considers

the whole population as the possible neighbors, and calculates a

separation force which is then used to steer the agent. The pseudo

code as implemented in the game application is given below:

Procedure: BoidsAlgorithm(BoidList)

for each boid in BoidList

 if boid != alive

 continue

 end if

 if boid.identity == thisBoid.identity

 continue

 end if

 distance =

getDistanceBetweenPoints(boid.position,thisBoid.position)

 if distance<seperationdistance

 dir = thisBoid.position –

boid.position

 dir =dir/distance

 seperationforce =

seperationforce+dir

 seperationcount

=seperationcount+1

 end if

 if distance<cohesiondistance

 cohesionforce =

cohesionforce+boid.getPosition

cohesioncount = cohesioncount+1

 end if

if distance<alignmentdistance

 alignmentforce =

alignmentforce+boid.getVelocity

 alignmentcount =alignmentcount+1

end if

normalize seperationforce,alignmentforce and

cohesionforce

thisBoid.setVelocity(thisBoid.getVelocity +

seperatiforce+alignmentforce+cohesionforce

end for

3.2.2 The Uniform Grid implementation: The uniform grid

approach was comprised of two stages. The first stage is the

allocation of a cell index which shows the cell that the boid is

currently inside. The second stage performs continual update of

the boid’s cell index in case the boid moved away from its

previously allocated cell, and the calculation of the separation,

cohesion and alignment steering forces by making use of the cell

index to retrieve possible nearest neighbors in the cell that it

references. The Pseudocode is outlined below:

Procedure:
boidsAlgorithmUgrid(Grid,thisBoid,sepDist,velocity,cellindex,i

sRegistered)

start

if cellindex==infinity

 for each cell in Grid

 if thisBoid.position is inside cell

 isregistered =

registerBoidInCell(cell,thisBoid)

 cellindex = cell.getIndex()

 goto start

 end if

 end if

 end for

end if

 currentcell = Grid.getCellByIndex(cellindex)

 isboidstillinside =

currentcell.isPointInside(thisBoid.position)

 if isboidstillinside

 CellBoidList = currentcell.getList

 BoidsAlgorithm(CellBoidList)

 else

 currentcell.removeBoidFromCellList(thisBoid)

 cellindex =infinity

 end if-else

end if

The ‘isregistered’ flag can only be true if the size of boids

registered in that cell is less than maxCapacity. If this flag was

set to false, the boid will quit its current desire goal of moving to

the area enclosed by that cell, thereby reducing the possibility

worst case scenario of all boids accumulating in a single cell.

3.2.3 How goal allocation was used to avoid performance

drawback: When a boid moved into a region of space (cell) that

was allocated up to maxCapacity value, its ‘isregistered’ flag

was set to false. The AI of the boids was designed in such a way

that, if a boid is unregistered, it discards its current desired goals

and choose a random goal that fall in its default allocated cell at

the beginning of the simulation. This essentially resets the boid

to its default cell by pursuing that goal, minimizing the

possibility of boids packing up in a single cell which can greatly

affect performance.

3.3 Game Application Design Framework

The crowd simulation framework was implemented in a first

person shooter video game called HERO. In the game, a player

controls a character that is tasked with a main goal of rescuing a

hostage at a given checkpoint in a game world. The hostage is

being kept by the ‘enemies’, and the player’s goal is to find and

rescue the hostage without being detected by the enemies. If

detected, the enemies will flock towards the player and attack

him. The ‘enemies’ represents the crowd of boids in the game

environment. Other than visual detection, other actions such as

player’s actions such as gunfire can alert nearby boids to search

the area where the gun was fired, and if player is found, the boids

will flock towards and attack the player.

3.3.1 Boids Navigation: The games virtual environment was

designed to mimic a city with a lot of objects such as buildings

and walls. Each boid must avoid collision with these objects

when moving along its desired goal, including other boids in the

simulation. Due to the complexity of the virtual scene, a path

planning algorithm was used for calculating obstacle-free paths.

https://www.ijarnd.com/

Mavhemwa Prudence M, Nyangani Ignatius; International Journal of Advance Research and Development

© 2018, www.IJARND.com All Rights Reserved Page | 55

The researchers used greedy best-first search algorithm for path

planning. As indicated by (Afanasyeva & Afanasyeva, 2014), a

simplified representation of the game environment (a graph) was

used by the path planning algorithm to calculate obstacle-free

paths for the boids in the simulation. Given a start node and the

goal node, the algorithm approximated a collision-free path by

expanding nodes on the graph that are nearest to the goal node.

The algorithm guarantees a collision free path only with static

obstacles in the environment.

Fig. 7: Flowchart showing application functionality

3.3.2 Boid Modeling: The 3D models representing the boid

agent in the game were designed to represent human models. The

virtual human models were defined by their mesh, their

skeletons, and their set of textures. Different elements were

varied across models such as texture color as indicated by

(Thalmann, Grillon, Maim, & Yersin, 2009). Modelling was

done using Blender software.

3.3.3 Boids Animation: The 3D models were pre-animated

using motion capture data from Carnegie Mellon University’s

motion capture database files. The motion capture data from the

files was mapped onto the skeleton of the 3D mesh that

represents the boid so that the boid may replicate actual human

motion captured on camera. BVHacker software was used for

editing motion capture data, and Blender was used to map that

data onto a models’ skeleton.

3.4 Sampling

Random sampling was used for determining the input size of the

algorithm, i.e. crowd size, and the samples are captured

uniformly during the simulation run. Each sample was captured

after every five simulation runs, and two variables were

captured; the profiled average run time of the simulation

algorithm and the average time of simulating a single boid. The

following table outlines a sample frame structure.

Table 1: Structure of a sample frame

Frame number Average

time/population

Average

time/single boid

3.4.1 Profiling execution times: To calculate average times for

each sample frame, the total execution for each algorithm time

was measured by using high resolution timestamps using

Windows API method, QueryPerfomanceCounter(). This

function ‘retrieves the current value of the performance counter,

which is a high resolution (<1µs) time stamp that can be used for

time-interval measurements’ (Microsoft, 2017). These counters

can provide information as to how well an algorithm is

performing.

The usage of the high resolution time stamping method was

chosen as it is typically the best method to use to time stamp

events and measure small time intervals that occur on a system.

The only limitation is that it is a Windows API and only work on

Windows, thus, experiments will only be limited to the Windows

operating system.

3.5 Data Analysis Procedure

The researcher used quantitative analysis on the results obtained

from the experiments. The average execution time values

(means) obtained by executing the algorithm under same

conditions were afterward used to conduct a chi-squared test to

determine if there exist a significant difference in performance

after the uniform spatial subdivision was implemented to the

naïve algorithm. The tests were conducted using GNU’s PSPP

statistical package. This analysis procedure helped to verifying

the research hypothesis.

4. DATA PRESENTATION, ANALYSIS AND

INTERPRETATION
4.1 Data presentation

Profiling was used to gather data for the experimental

measurement of the performance of the algorithms using time

stamping, and a benchmark was conducted to assess the relative

performance of uniform grid to the naïve implementation. An

experiment was carried out for each algorithm, and each

experiment is intended to execute that algorithm on an input

problem of size n, that is, the crowd size.

Samples were taken after every five simulation runs, and two

variables were captured in each sample; the average time taken

to simulate the whole population and the average time taken to

simulate a single boid in the population. A total of 5000 samples

were taken for each simulation run. Benchmarking was done on

an HP 655 Laptop with 4GB RAM, an AMD E2-1800 APU

1.70Gz processor and 64-bit Windows 7 Ultimate operating

system. Table 2 below shows summaries.

Table 2: Simulation times of two algorithms

Simulati

on run

Crow

d Size

Naïve Approach Uniform Grid

Approach (3x3 grid)

Avg

Time/Cr

owd(µs)

Avg

Time/

Boid (µs)

Avg

Time/Cro

wd(µs)

Avg

Time/

Boid (µs)

1 9 50.843 5.649 39.8429 4.427

2 12 64.961 5.413 46.662 3.889

3 86 1761.944 20.488 468.072 5.443

4 386 35273.175 91.382 6991.424 18.112

5 469 49011.579 104.502 9203.373 19.623

6 590 82597.872 139.996 14948.575 25.337

7 855 212265.70

2698

248.2639

80

33798.5520

13

39.53395

1

8 967 329499.81

2

340.744 47419.902 49.038

9 1290 640414.36

6

496.519 108848.248 84.372

https://www.ijarnd.com/

Mavhemwa Prudence M, Nyangani Ignatius; International Journal of Advance Research and Development

© 2018, www.IJARND.com All Rights Reserved Page | 56

Average time per simulation run is calculated as:
𝑇𝑜𝑡𝑎𝑙 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 (𝑟𝑢𝑛𝑠)

Average time to simulate a single boid is calculated as:
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑖𝑚𝑒 𝑝𝑒𝑟 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝑇𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑜𝑖𝑑𝑠

4.2 Data analysis and interpretation

A chi-square test was carried out on the means (average

execution times) in the experiment. The aim was to determine if

there is a significant difference in performance as a result of the

grid implementation. Statistic results obtained in PSPP from the

above experiment are given below:

Table 3: Chi-square test results

Figure 9 below shows the graphical representation of the

comparison.

Fig. 8: Naive vs. Uniform grid results

According to the results of implementation of the 3x3 uniform

grid, best performance speedups were achieved when crowd

sizes were large as compared to smaller crowd sizes. This is

largely the result of the cost of determining the current cell on

the grid that each boid resides in each simulation run. For a small

crowd size, the naïve approach of neighborhood gathering is

much efficient because there are very few neighborhood

comparisons that are made and there are no costs of cell

allocation. The uniform grid, though faster than naïve approach

for the same small crowd size, is less effective because the

algorithm has an additional cost of determining the cell that each

boid lie before determining a Boid’s nearest neighbors.

However, as the crowd size is increased, the uniform grid

becomes more efficient than the brute force approach because it

discards a large amount of the crowd from neighborhood tests as

compared to the naïve approach. Moreover, the goal allocation

strategy used by the researchers limited each cell’s carrying

capacity to values less than the total population size, which

avoided the boids to gather in a single cell, thus avoiding the

same order of evaluation as the naïve approach. In other words,

increasing the number of boids leads to a significant performance

improvement when using the uniform grid because it largely

minimizes unnecessary neighborhood tests. On the contrary,

small crowd sizes do not result in best speedups because there

are few neighborhood tests that need to be performed and there

is are greater costs of cell allocation.

5. SUMMARY OF RESEARCH FINDINGS
To find the difference between the algorithms execution times,

time stamping method was used to measure the interval between

each algorithm start times up to its finishing time. Results

obtained indicated that the uniform grid implementation

performed better at large crowd sizes as compared to the naïve

neighborhood gathering. Moreover, goal setting allowed the

crowd to be uniformly distributed across the environment during

the simulation, thus, minimizing the possibility of a worst case

scenario whereby the whole population is cluttered in a single

cell.

5.1 Conclusion

The aim of the researcher was to determine if implementation of

uniform spatial subdivision in the Boids algorithm may speed up

simulation of large crowds. By using the research results

gathered, we can say the research objectives were achieved to a

greater extent.

The statistical results obtained from chi-square test produced a

p-value of 0.230. Using the test, we reject H0 if p is less than

0.05. In this case, we would fail to reject H0 and conclude that

there is no significant difference of using the uniform spatial

subdivision approach in improving performance of the naïve

boids algorithm. However, by improving performance, we

actually mean reducing the actual execution time, not increasing

it. This means there exist weak evidence that there is no

significant difference of using the uniform spatial subdivision

approach in increasing performance of the naïve boids algorithm,

thus, we reject H0 and conclude that there is a significant

difference of using the uniform spatial subdivision approach in

increasing performance of the naïve boids algorithm. Thus the

researchers was able to accelerate performance of the naïve

Boids algorithm by using uniform spatial subdivision technique.

We can safely say the implementation of uniform spatial

subdivision improves performance of the Boids algorithm in

simulating flocking behavior in large crowds. The benchmark

results indicated that the researchers were able to accelerate

performance, since we were able to simulate up to 1290 boids at

interactive frame rates as compared to the naïve algorithm.

5.2 Recommendations and future work

Due to the performance results obtained in this research, we

recommend implementation of the uniform grid technique when

optimizing simulations that involve a lot of interacting objects in

real-time, be it crowd or particle simulations. Its simplicity of

implementation in combination with using a set of goals to

constrain objects movement, can offer a great deal of

performance while ensuring uniform distribution of objects on

the grid to avoid performance hitches. We have shown that this

technique was able to simulate more than 1000 boids at

interactive rates. A possible combination that might be exploited

in the future is to combine parallel processing methods (e.g.

multithreading) with the uniform grid to further improve the

grid’s performance.

0

100000

200000

300000

400000

500000

600000

700000

1 2 3 4 5 6 7 8 9 10 11 12 13

A
vg

 T
im

e/
C

ro
w

d

simulation run

Naive Algorithm vs Uniform Grid

Naïve Approach Uniform Grid

https://www.ijarnd.com/

Mavhemwa Prudence M, Nyangani Ignatius; International Journal of Advance Research and Development

© 2018, www.IJARND.com All Rights Reserved Page | 57

6. REFERENCES
[1] Afanasyeva A. (2014, June). Developing a crowd simulation

libraryfor mobile games. BACHELOR´S THESIS. TURKU

UNIVERSITY OF APPLIED SCIENCES.

[2] Bennet H, Y. C. (2013). Amortized Analysis of Smooth

Quadtrees in All Dimensions. 1-2. New York: Courant

Institute.

[3] Beyer K, G. J. (1998). When is "Nearest Neighbor"

Meaningful? Springer-Verlag Berlin Heidelberg , 217-235.

[4] Daniel Thalmann, H. G. (n.d.). Challenges in Crowd

Simulation. Retrieved October 2, 2016, from

https://infoscience.epfl.ch

[5] Devlin C. (2016, August 22). An Investigation into an

Assortment of Flocking Algorithms. Masters Thesis, 1-14.

[6] Drozd A. (2015). Signal-Driven Swarming: A Parallel

Implementation of Evolved Autonomous Agents to Perform

A Foraging Task Signal-Driven Swarming.A . 126-133.

[7] Fachada N, L. V. (2016). Towards a standard model for

research in agent-based modeling and simulation.

International Journal of Parallel Programming, 1-33.

[8] Ho T, G. W. (2012). Virtual Subdivision for GPU based

collision detection of deformable objects using a uniform

grid. Springer-Verlag, 829-838.

[9] Hughes J, V. D. (2013). Computer Graphics:Principles and

Practices. Addison-Wesley.

[10] Ioannis Pantazopoulos and Spyros Tzafestas. (2002).

Occlusion Culling Algorithms: A Comprehensive Survey.

Journal of Intelligent and Robotic Systems Volume 35,

Issue 2, pp 123–156.

[11] Joselli, M. P. (2012). A flocking boids simulation and

optimization structure for mobile multicore architectures.

SBGames 2012.

[12] Jur van den Berg, S. P. (n.d.). Interactive Navigation of

Individual Agents in Crowded Environments. Retrieved

October 6, 2016, from

http://gamma.cs.unc.edu/RVO/NAVIGATE/

[13] M.Sajwan, D. S. (2014). Flocking Behaviour Simulation :

Explanation and Enhancements in Boids Algorithm.

International Journal of Computer Science and Information

Technologies, 1-6.

[14] Mark Joselli, E. B. (2009). A neighborhood grid data

structure for massive 3d crowd simulation on gpu. Games

and Digital Entertainment (SBGAMES), 2009 VIII

Brazilian Symposium on, (pp. 121-131).

[15] Microsoft. (2017). QueryPerformanceCounter function.

Retrieved March 3, 2017, from

https://msdn.microsoft.com/en-

us/library/windows/desktop/ms644904(v=vs.85).aspx

[16] Rahul Narain, A. G. (2009). Aggregate dynamics for dense

crowd simulation. ACM Transactions on Graphics, 28(5).

Proceedings of ACM SIGGRAPH Asia 2009, SIGGRAPH

Asia '09. Yokohama: SIGGRAPH Asia '09.

[17] Reynolds Craig W. (2000). Interaction with Groups of

Autonomous Characters. Interaction with Groups of

Autonomous Characters, in the proceedings of Game

Developers Conference (pp. 449-460). San Fransisco,

Carlifonia: CMP Game Media Group .

[18] Reynolds, C. W. (1987). Flocks, Herds, and Schools:A

Distributed Behaviral Model. ACM SIGGRAPH '87

Conference Proceedings, Anaheim, California, July 1987

(pp. 25-34). Anaheim, California: ACM SIGGRAPH.

[19] Weiss Robin M. (2010, May). GPU-Accelerated Data

Mining with Swarm Intelligence. Honor Thesis. Macalester

College.

[20] YILMAZ, E. (n.d.). Massive crowd simulation with parallel

processing. Retrieved 09 25, 2016, from

citeseerx.ist.psu.edu:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.

465.7297&rep=rep1&type=pdf

https://www.ijarnd.com/

