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ABSTRACT 
 

Video games often make use of simulation to represent part of 

real world phenomenon; be it simulating a typical crowd 

behavior (e.g. chaos, rioting), or particle simulation (e.g. fire, 

smoke) and many other uses. Games have one common 

characteristic, i.e. they are interactive real-time systems, 

meaning to say processes that run in these applications must 

execute within a limited time threshold for the application to be 

called successful. The Boids algorithm is often used in these 

applications for realistic simulation of flocking type of 

behavior of virtual crowds. However, simulation of crowds in 

real-time using the algorithm is computationally time 

consuming, due to how the algorithm evaluates the whole 

crowd when searching for possible nearest neighbors for each 

agent in the simulation. There are several approaches to 

improve performance of these flocking simulations in real-

time, and in this document we discuss some of those methods 

that have been applied to the Boids algorithm.  We further 

implement and test one of these performance optimization 

methods, and use benchmarking results to compare 

performance of the method versus the boids algorithms’ brute 

force neighborhood gathering approach. 
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1. INTRODUCTION 
Several algorithms have been developed to simulate the 

coordinated motion of a group of agents, and most of them have 

originated from swarm intelligence. They are most known as 

flocking algorithms, and have been widely implemented in video 

games to simulate the complex flocking behavior of interacting 

agents such as soldiers and monsters in virtual environments.  
 

The first flocking-behavior simulation was done on a computer 

by Craig W. Reynolds in 1986, and called his simulation 

program “Birds” (M.Sajwan, 2014). He coined the name ‘boid’ 

to represent each agent in his simulation, hence the name of the 

algorithm. The algorithm tries to simulate complex flocking 

behavior by implementing three main heuristic rules that each 

boid must obey which are: 

 Cohesion: Cohere with other characters by steering towards 

the average position of the local neighborhood. 

 Alignment: Steer towards the average direction or heading of 

local flock mates. 

 Separation: Avoid collision and crowding with other local 

flock mates. 

When combined, these three basic rules can provide a realistic 

flocking simulation of a group of agents. Unfortunately, the 

Boids algorithm can be very computer-intensive when very large 

groups are considered, mainly due to the process of evaluating 

possible nearest neighbors (Reynolds, 1987). By using the 

algorithm in real-time applications such as video games, the cost 

of simulating large crowds can significantly affect application’s 

performance.  

 

1.1 Problem Statement 

Real-time simulation of virtual crowds has always been a big 

challenge, mainly due to the limited amount of computational 

resources available on commercial CPUs (Yilmaz, 2010). In the 

boids simulation model, for each boid to make a decision such 

as to move in space, it must first determine the possible nearest 

neighbors that it might (for instance) collide with. The problem 

is how one boid determines its proximate neighbors out of a big 

population of boids, whilst using limited computational 

resources that are inherent in real-time systems. The brute force 

approach of determining nearest neighbors makes it infeasible 

for the boids algorithm to simulate large crowds in real-time on 

most consumer CPUs. In real-time interactive systems, time is a 

limited resource and processes must execute within some given 

time threshold in-order for the system to be called successful 

(Joselli, Passos, Silva Junior, Zamith, & Clua, 2012). Thus, some 

performance optimization methods have to be explored in order 

to minimize the total simulation time so as to meet system’s time 

constraints. 

 

1.2 Objective 

To determine if implementation of uniform spatial subdivision 

to the boids algorithm may speed up flocking simulation of large 

crowd sizes in real-time. 

 

2. LITERATURE REVIEW 
The boids algorithm is one of the most commonly used 

algorithms in simulating crowd behavior, and has been used as a 

back-borne for most of the algorithms used in crowd simulation 

(Sajwan, Gosain, & Surani, 2014). However, naïve 

implementation of the boids algorithm has been shown to have a 

complexity of O(n2) as a direct result of near-neighbor queries 

(Silva, Lages, & Chaimowicz, 2009). This section will address 

how some performance optimization methods have been used to 

accelerate performance of the boids algorithm in simulating 

large virtual crowds with emphasis on the effectiveness of these 

strategies in real time applications.  
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2.1 Crowd Simulation Models 

Generally, all crowd simulation models can be classified under 

macroscopic and microscopic models, depending on their 

properties and approach in simulating crowds (Afanasyeva & 

Afanasyeva, 2014).  Macroscopic models treat the crowd as a 

whole and use flows to characterize crowd behavior and 

movement, whilst Microscopic models consider movement and 

behavior individually for each agent (Sun, 2014). 

  

2.1.1 Macroscopic Models: Macroscopic models are based on 

observed flow of human motion in different scenarios, for 

instance, panic or a crowd of people evacuating a building. As 

such, these models are used to simulate human behavior as an 

aggregate flow or in groups and avoids per-agent 

processing(Treuille, Cooper, & Popović, 2006). Despite the 

performance benefits that this method offers, it lacks the 

flexibility of a full agent-based approach since decisions are 

made at global level rather than per individual. 

 

2.1.2 Microscopic Models: In microscopic models, each agent 

in the simulation is regarded as an independent decision making 

entity. As the simulation progresses, agents continuously 

examine their surrounding environment, and then each agent will 

then make its own decisions depending on the current situation 

(Afanasyeva & Afanasyeva, 2014). These decisions will then be 

used to drive the agent’s individual characteristics such as 

position and velocity (Fachada, Lopes, Martins, & Rosa, 2016). 

However, since each agent is an independent entity that can 

make its own decisions, this also increases the amount of 

computations that have to be performed per agent in each 

simulation run.  

 

2.1.2.1 Boids Model: The algorithm in this model is able to 

simulate complex flocking behavior as a result of coordinated 

motion by implementing three simple rules that define the 

steering behavior of each boid. The following are the three rules 

as described earlier Separation, Alignment, and Cohesion. 

 

The separation rule simulates collision avoidance from nearby 

flock mates by calculating a force, such that if applied to a boid’s 

velocity, the force will allow a boid to get away from close 

agents. A threshold distance of separation is used to determine if 

the other boids in the flock are close enough to get away from.  

 

Alignment rule allows a boid to steer towards the average 

velocity or heading of the flock, essentially making a boid to 

steer towards the nearest boids. Nearest boids are determined by 

a threshold alignment distance, and the average of their velocities 

is calculated. Then the difference between the average velocity 

and the current boid’s velocity are measured and the force is 

added to the direction of the vector difference of these two 

velocities. 

 

The cohesion rule allows a boid to get closer to the center of 

neighbor boids, and this rule can be seen as a type of attraction 

rule. The center of neighbors is calculated by adding all their 

positions and then dividing them by the number of the neighbors. 

 

A generalized pseudo code for the naïve boids algorithm is 

presented below (Weiss Robin M, 2010) 

create N boid agents and initialize with random position and 

velocity 

for each boid: 

  vAvoid = collision avoidance force 

vMatching = velocity matching force 

vCentering = flock centering force 

boid.velocity += (c1 * vAvoid) + (c2 * vMatching) + 

(c3 * vCentering) 

boid.position += boid.velocity 

end for 

 

The terms c1, c2 and c3 represent the weights used to weigh the 

forces, depending on the type of agent being simulated. For 

instance, when simulating the schooling behavior of fish, a high 

weight on the cohesion force will be used. Humans however, 

might need a small weight of the cohesion force since human 

movement tend to be more independent in nature, unless maybe 

simulating rioting scenarios where people seem to move 

cohesively in groups. 

 

Other than these basic rules, several other rules can be added to 

enhance the visual results of the simulation (C. W. Reynolds, 

n.d.-a). The advantage of the boids algorithm over most of 

contemporary simulation algorithms is its ease of 

implementation whilst providing highly realistic results 

(Afanasyeva & Afanasyeva, 2014). Since it is a microscopic 

model, these three forces are calculated independently of other 

agents in a simulation. This individuality allows simulation of 

more complex behavior since each agent reacts to its surrounding 

environment basing on its current situation. 

 

Nevertheless, the boids algorithm has its own shortcomings. The 

straightforward implementation of the boids algorithm has an 

asymptotic complexity of O(n2) (Joselli et al., 2012). For small 

flock a size, the computational cost is not of much concern but 

when the size of the flock starts to increase, visualization of the 

simulation in real-time becomes very expensive. Thus, applying 

the algorithm to simulate crowds in real-time applications 

becomes useless. 

 

2.2 Boids Algorithm Performance Optimization  

The major bottleneck of the naïve boids algorithm is the cost of 

performing near-neighbor queries in-order to gather separation, 

cohesion and alignment information (C. Reynolds, 1983), (Silva 

et al., 2009). For each agent in the boids simulation to determine 

its proximate neighbors, it has to compare its distance from every 

other agent’s position in the scene in-order to determine the 

number of agents that are within its neighborhood (Yilmaz, 

2010). For very small population sizes, the computational time 

is not of much concern. However, as the population size starts to 

increase to several hundreds or thousands of agents, these 

proximity costs will ultimately dominate all other costs in the 

simulation, regardless of how fast each proximity query can be 

done (Reynolds Craig W, 2000). This makes the naïve approach 

useless in real-time interactive environments.  

 

2.2.1 Parallel Processing: Parallel processing is a field of 

computation where several processors are used to solve parts of 

a given problem in parallel. Parallelism of a model can be 

achieved by decomposing the model into several components, 

such that each component can be independently processed by 

logical processors in a parallel manner (Fachada et al., 2016). 
 

Several researchers have used parallel processing to speed up the 

boids algorithm in simulating massive crowd sizes, both on the 

CPU and the GPU. The former approach uses multi-threading as 

a way of performing these computations on different processor 

cores, whilst the latter uses either GPGPU or modern 

heterogeneous systems such as NVidia’s Compute Unit Device 

Architecture (CUDA) or Open Computing Language (OpenCL) 

(Yilmaz, 2010), (Drozd, 2015), (Fachada et al., 2016). 
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The boids algorithm was also used to simulate swarming 

behavior by (Drozd, 2015), in which agents used information 

from their surrounding environment to perform given tasks such 

as food foraging. He showed that by exploiting multicore CPUs 

for parallel processing, he could simulate signal propagation for 

over 100000 agents at interactive frame rates. 

The computational power of GPUs and their ability to run non 

graphical algorithms through GPGPU has motivated other 

researchers to exploit parallel programming to speed up crowd 

simulation using the boids algorithm. Modern GPUs have been 

shown to  run algorithms 10 to 100 times faster than CPUs 

(Relations, n.d.). (Yilmaz, 2010) used CUDA technology as the 

general purpose parallel programming tool to write the parallel 

boids algorithm for the NVidia GTX 295 GPU. He showed that 

it is possible to achieve two orders of magnitude speedups using 

CUDA parallel computing architecture as compared to serial 

code running on the CPU. 

 

Another usage of parallel processing in the boids algorithm was 

implemented by (Zhou, 2004). His main goal was to minimize 

the quadratic complexity and to increase the number of agents in 

the simulation. In their implementation, they used a computer 

cluster and each processor had to communicate with other nearby 

processors to query for near-neighbor information. Using this 

approach, they were able to simulate up to 512 individual boids 

at interactive frame rates.  

 

Despite the performance improvements that parallelism offers to 

the boids algorithm, it also presents several problems; mainly, 

the effective way in which the model must be represented in 

order for parallelism to work (Fachada et al., 2016). Parallel 

processing is a divide and conquer technique, in which a problem 

in decomposed into several sub problems that can be solved in 

parallel. Therefore in order to use parallel processing on a model, 

there is need to decompose the model into several components 

that can be processed independently. Fachada argued that model 

decomposition can involuntarily introduce changes which can 

modify the model dynamic due to implementation details, thus 

failing to reproduce same visual results or behavior as the 

original model. 

 

2.2.2 Occlusion Culling: (Silva et al., 2009) introduced an 

approach to minimize the costs of near neighbor queries in the 

boids algorithm using estimated self-occlusion. He defined self-

occlusion as ‘the possible occlusion caused by a boid in view of 

the other boids during flight’. The main idea was that boids must 

only query near neighbor information from other boids that are 

visible from their field of view, so as to perform separation, 

alignment and cohesion calculations. It is shown in Figure 1 

below. 

 
Fig. 1: Self-occlusion. Agents that fall within an agent field 

of view and un-occluded by other agents are considered as 

neighbors (Silva et al., 2009) 

Using this approach, the number of neighbors considered in the 

computations is significantly reduced as a result of neglecting 

boids that would be invisible due to the presence of other boids. 

The implementation of the boids model and the visibility culling 

algorithm was done on the GPU using both GPGPU and CUDA. 

Despite being efficient at simulating large flock sizes, the 

method relies on offloading visibility computations to the GPU 

for performance speed-ups. This limits the applicability of this 

technique in some computers that have CPUs only as a 

computational device. 

 

2.2.3 Spatial Subdivision 

Spatial subdivision can be defined as the structured partitioning 

of geometry (Rhodes, 2014). It n is a general optimization 

technique that has been applied to several computational 

problems including ray tracing (Havran, 2004) and cloth 

simulation (Ho, Geoff, & Fabio, 2012). The basic idea behind 

spatial subdivision is to subdivide a given geometrical space into 

smaller sub-spaces or cells, which can then be used to speed up 

proximity or locality queries (C. Reynolds, 2006).Figure 2 below 

shows the Spatial Subdivision technique. 

 

 

 
Fig. 2: Illustration of 2D space decomposition by using a 

quadtree. Points in 2D space (top left), subdivided 2D space 

(top right), resulting quadtree structure (bottom) (Drozd, 

2015) 
 

Generally, spatial subdivision structures can be categorized into 

two sub categories; object independent structures and object 

dependent structures (Teschner, Detection, & Response, 1976).  

 

2.2.3.1 Object independent spatial structures: Object 

independent spatial structures do not take into account the 

distribution of the objects in space. These structures divide a 

given space independent of object distribution, and are 

considered to be the simplest spatial structures. Examples of 

object independent structures are regular grids and bin-lattice 

method. 

 

2.2.3.2 Bin-Lattice Spatial Subdivision: In this method, a 

region of space is subdivided into smaller boxes called bins (C. 

Reynolds, 2006). At the beginning of the simulation, agents are 

distributed into these bins depending on their initial position. 

Every time an agent moves from its current position to the next 
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position, it checks if it is still inside its allocated bin. If the agent 

has moved to another bin, it updates its bin membership to the 

current new bin. All the bins that intersect with the agent’s 

spherical neighborhood become the current search space, as 

such, near neighbor queries will be limited to those bins. 

 

Using this type of optimization structure, Reynolds was able to 

reduce the simulation complexity from O(n2) to linear O (kn). 

This was largely due to a constant bounded number of agents k 

within each boids’ radius of influence that were considered as 

near neighbors, thus, avoiding a boid to evaluate the whole 

population. However, this complexity has been shown to be 

highly dependent on the maximum density of each grid cell, 

which could be high if the simulated environment is very big and 

condensed (Joselli et al., 2009). Reynolds showed that by using 

bin-lattice subdivision technique on a flock size of 1000 

simulated birds, performing locality queries was about 16 times 

faster than the naïve implementation.  

 

2.2.3.2 Uniform Spatial Subdivision: The main idea behind 

uniform spatial subdivision is to partition the space into many 

uniform cells, and then perform tests only for primitive pairs 

belonging to the same cell (Ho et al., 2012). The resulting data 

structure is often referred to as a uniform or regular grid. As the 

space is divided into smaller chunks and computation are limited 

to a single cell only, selecting the possible near neighbors will 

avoid the O(n2) complexity (Silva et al., 2009). 

 

The major advantage of using a uniform grid is that the grid 

doesn’t change over the simulation process, thus, it has a 

constant cost to build as compared to other recursive structures 

such as quadtrees (Silva et al., 2009). Despite recursive 

structures being more efficient in most scenarios, uniform grids 

are much simpler and less complex to construct and manage. 

However, regularity of the grid does not allow the structure to 

adapt with distribution of objects in a scene (Havran, 2004).  

 

2.2.3.3 Object dependent spatial structures: Object dependent 

spatial structures consider the distribution of objects in space, 

which result in irregular subdivision. These type of structures 

,also known as hierarchical structures, partition a given space 

into several subspaces, taking into account the distribution of 

objects in a scene (Hughes et al., 2013). By taking into account 

object distribution in a given space, hierarchical structure results 

in a non-uniform subdivided space; areas where objects are 

densely populated is subdivided the most as compared to other 

areas with fewer objects. Under these we have 

Quadtrees(Lu,2014), (Bennet 2013) and (Devlin,2016) and 

Octrees(Samet ,1988) , (Pantazopoulos & Tzafestas, 2002) and 

(Hughex et-al ,2013). 

 

Using this data structure has the advantage of eliminating large 

portions of the flock from near neighbor consideration (pruning). 

Thus when used for near neighbor queries, the structure may 

speed up computations by orders of magnitude from the naïve 

approach. However, Devlin’s implementation was inefficient 

because the quadtree had to be recreated in each simulation run. 

He proposed a solution to this problem in which a tree would be 

saved but this approach can be complex and expensive to 

implement in real-time, by considering the time cost of building 

the structure with respect to the crowd size that is represents. 

 

Octrees have been used to speed up a flocking boids simulation 

by (Drozd, 2015).  His implementation was based on signal-

driven evolving autonomous agents using an asynchronous 

evolutionary algorithm. The algorithm was based on signal 

propagation, and an aggregate signal transmitted by all other 

boids in the simulation is calculated by each boid, which can lead 

to an O(n2) complexity if naïve algorithm was used. Similar to 

(Devlin, 2016), each simulation step began by constructing the 

tree from scratch, and performing near neighbor queries for each 

agent by traversing up the constructed tree. He noted that his 

algorithm was a few orders of magnitude faster than naive 

implementation. Regardless of the octree improving 

performance of the flocking simulation, octrees are just 3D 

versions of quadtrees and suffer from the same limitations, such 

as tree balancing and frequent re-construction. Each simulation 

step required that the tree be reconstructed, which may be 

inefficient for very large crowds. 

 

2.3 Challenges of using uniform grids 

Uniform grids has a lot of advantages when used as an 

acceleration structure; mainly its constant cost to build and 

simplicity of implementation(Devlin, 2016) and (Drozd, 2015). 

However, the manner in which objects are distributed over the 

grid is a major determination of success of this structure 

(Rhodes, 2014) . The worst case result when all agents in the 

population are crammed within a single cell on the grid. This 

means that the whole population size (n) will be evaluated by 

each boid in that cell during near-neighbor querying, thus 

leading to the same evaluation as the O(n2) brute force approach. 

Possible solutions to this problem have been proposed by 

researchers; notably (Havran, 2004) proposed to recursively 

subdivide the cell that has most objects, so that it can be further 

broken down into smaller cells. However, considering the fact 

that boids are dynamic and the whole population might move to 

another single cell, this means that the recursive subdivision 

process must also be done on that cell to break it into smaller 

cells. As a result, there would be frequent subdivision which may 

result in a dense grid which may be difficult to manage memory 

wise. 

 

2.4 Conclusion 

The researchers have presented and evaluated some of the 

performance optimization techniques that have been applied to 

the boids algorithm. The researchers are going to make use of a 

uniform grid in order to speed the boids algorithm in simulating 

a virtual crowd. However, performance of uniform grids have 

been shown to be affected by irregular allocation of objects 

across its cells, which may lead to the same evaluation as the 

naïve algorithm. To counter this limitation, the researchers are 

going to use a goal driven boids simulation, in which a boid is 

driven by a set of goals that avoid it from moving into cells that 

are already densely allocated. This will greatly reduce the 

possibility of occurrence of a worst case scenario, whilst 

maintaining the structure of the grid as compared to the recursive 

cell-subdivision solution.  

 

3. RESEARCH DESIGN AND METHODOLOGY 
The researchers used a mixed methodology which includes the 

modeling of the uniform grid algorithm, simulation of a crowd 

using the algorithm and an experiment to test the algorithm using 

a set of parameters. The simulation parameter that was varied 

during the experiment was the input size (i.e. crowd size), and 

the researcher aimed to describe the variation of the algorithm 

output under the condition that was hypothesized to reflect 

variation. 

 

3.1 Crowd simulation design framework 

The crowd was represented as a collection of individual 

humanoid agents (boids) that can interact on their own, and also 

to the user’s (game player) inputs. Uniform spatial subdivision 
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concept was used to decompose the game world into smaller 

regular cells, which were subsequently used as input to the boids 

algorithm in order to speed up near-neighbor queries during the 

simulation. 

 

The game world was represented as a rectangular 3D mesh 

covering every object in a modeled game environment. The 

subdivision process was done using a 3D authoring tool, and the 

resulting grid of uniformly-subdivided cells was stored in an 

array as a collection of small bounding boxes of those cells. 

Thus, crowd simulation design was comprised of two parts; the 

preprocessing of scene to create a uniform grid and the actual 

utilization of that grid as an optimization structure during the 

simulation. 

 

3.1.1 Scene pre-processing: The subdivision process was not 

done algorithmically, but was done manually through modeling 

in a 3D authoring tool called Blender. This was done during the 

scene modelling stage when the actual game objects were 

created. The output of the modeling process (uniform grid mesh) 

was exported into a game engine, and then used to extract 

geometric information that was used for the construction of a 

uniform grid of 3D axis-aligned bounding boxes. Lastly, 

simulation was carried out by allocating the boids to cells on the 

grid basing on their position in space, and allocating them 

random goals. 
 

3.1.2 Creation of Uniform Grid: In Blender, the world object 

is represented as a huge cubic 3D mesh covering all other objects 

in the scene as shown in Figure 3 below. 
 

 
Fig. 3: A prototype game environment scene with buildings 

(snapshot taken from blender) 
 

.  

Fig. 4: The yellow outlined box shows the rectangular world 

mesh covering all objects in the game scene (snapshot taken 

from blender) 

 
Fig. 5: A subdivided world mesh giving a regular grid of cell 

meshes over the scene (snapshot taken from blender) 

Uniform subdivision was done by editing the 3D world mesh 

using Blender’s mesh editing tools, specifically the loop-cut tool 

which is often used to add uniformly spaced edges on a mesh. 

After the loops are added to the world mesh, the small cells 

marked by the added ridges were then split into independent 

objects from the main world mesh. Each cell mesh was then 

centered about its own geometry in the scene, and shared the 

same identifier as the main world object, as shown above. These 

subdivided meshes were used as a guide for representing the 

uniform grid in the game engine. 

 

After the scene was modelled and saved, it was then exported 

into the Irrlicht game engine where the actual 3D bounding boxes 

were extracted from the subdivided cubic meshes’ geometry. In 

Irrlicht, each mesh is imported as a scene node and added to the 

collection of other scene nodes called the scene graph, and each 

scene node has its own bounding box automatically generated by 

the engine when the node is created. All the nodes that represent 

a cell in the grid are given a same identifier to distinguish them 

from all other nodes in the scene graph, and to identify them for 

pre-processing. 

 

The extracted bounding boxes were subsequently stored in an 

array and the cubic meshes were removed from the scene graph. 

Thus, the uniform grid was represented as an array of 3D axis-

aligned bounding boxes extracted from the cell meshes, not the 

actual mesh themselves. This pre-processing step was done once 

before the simulation process, and the grid size remains constant 

throughout the simulation process 

 

3.1.3 Cell and goals allocation: The distribution of objects 

using a uniform grid has a severe impact on the grid’s 

performance, and to achieve optimal performance, each cell in 

the grid must contain the same number of objects as all other 

cells (Rhodes,2014). To avoid irregular allocation of boids over 

the uniform grid, a cell and goal allocation algorithm was used 

to equally distribute the crowd to the cells and allocate them 

goals in those cells. The maximum capacity that each cell can 

hold was achieved by dividing the crowd size with the number 

of cells in the grid. The cell allocation algorithm was 

subsequently used to fill each cell up to maximum capacity and 

move on to the next cell recursively. Maximum capacity is 

calculated as follows: 

maxCapacity = crowdSize/GridSize 

 

The goals are just a set of 3D positions that were located inside 

the boid’s allocated cell. These positions help the boid to 

randomly navigate throughout the virtual environment. Goals are 

extracted from ‘empty’ scene objects in the game scene that were 

designated as goal nodes during the scene modelling process; 

they just contain 3d position information, a name and an identity 

to uniquely identify them. 

 

 
Fig. 6: The orange dots represents the ‘empty’ objects that 

are used to represent the goals of the agents 
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A boid continually steer towards its goal taking into 

consideration the separation, alignment and cohesion forces. If a 

goal is reached, another goal is randomly chosen in that cell and 

set as the current goal. Goal setting simulates random movement 

as usually seen in human crowds (Szymanezyk, Duckett, & 

Dickinson, 2012).  

 

3.2 Boids Algorithm and Utilization of the Uniform Grid an 

Optimization Structure 

Since the major goal of this research is to determine if the 

implementation of spatial subdivision can speed up crowd 

simulation using the boids algorithm, the researchers 

implemented two different algorithms; the naïve neighborhood 

gathering approach of the original boids algorithm and a 

modified algorithm which used the uniform grid as 

neighborhood gathering structure. The runtimes of these 

algorithms were then measured and compared against each other 

to determine the most effective approach. The boids algorithm 

was adapted from (Shiffman, 2016). 

 

3.2.1 The naïve implementation: The naïve approach considers 

the whole population as the possible neighbors, and calculates a 

separation force which is then used to steer the agent. The pseudo 

code as implemented in the game application is given below: 
 

Procedure: BoidsAlgorithm(BoidList) 

for each boid in BoidList 

  if boid != alive 

   continue 

  end if 

  if boid.identity == thisBoid.identity 

   continue 

  end if 

  distance = 

getDistanceBetweenPoints(boid.position,thisBoid.position) 

  if distance<seperationdistance 

   dir = thisBoid.position – 

boid.position 

   dir =dir/distance 

   seperationforce = 

seperationforce+dir 

   seperationcount 

=seperationcount+1 

  end if 

  if distance<cohesiondistance 

   cohesionforce = 

cohesionforce+boid.getPosition 

cohesioncount = cohesioncount+1 

  end if 

if distance<alignmentdistance 

 alignmentforce = 

alignmentforce+boid.getVelocity 

 alignmentcount =alignmentcount+1 

end if 

normalize seperationforce,alignmentforce and 

cohesionforce 

thisBoid.setVelocity(thisBoid.getVelocity + 

seperatiforce+alignmentforce+cohesionforce 

end for 

 

3.2.2 The Uniform Grid implementation: The uniform grid 

approach was comprised of two stages. The first stage is the 

allocation of a cell index which shows the cell that the boid is 

currently inside. The second stage performs continual update of 

the boid’s cell index in case the boid moved away from its 

previously allocated cell, and the calculation of the separation, 

cohesion and alignment steering forces by making use of the cell 

index to retrieve possible nearest neighbors in the cell that it 

references. The Pseudocode is outlined below: 
 

Procedure: 
boidsAlgorithmUgrid(Grid,thisBoid,sepDist,velocity,cellindex,i

sRegistered) 

start  

if cellindex==infinity  

 for each cell in Grid 

  if thisBoid.position is inside cell 

   isregistered = 

registerBoidInCell(cell,thisBoid) 

     cellindex = cell.getIndex() 

     goto start 

   end if 

    end if 

 end for 

end if 

 currentcell = Grid.getCellByIndex(cellindex) 

 isboidstillinside = 

currentcell.isPointInside(thisBoid.position) 

  if isboidstillinside 

   CellBoidList = currentcell.getList 

   BoidsAlgorithm(CellBoidList) 

  else 

  

 currentcell.removeBoidFromCellList(thisBoid) 

   cellindex =infinity 

  end if-else 

end if 
 

The ‘isregistered’ flag can only be true if the size of boids 

registered in that cell is less than maxCapacity. If this flag was 

set to false, the boid will quit its current desire goal of moving to 

the area enclosed by that cell, thereby reducing the possibility 

worst case scenario of all boids accumulating in a single cell. 
 

3.2.3 How goal allocation was used to avoid performance 

drawback: When a boid moved into a region of space (cell) that 

was allocated up to maxCapacity value, its ‘isregistered’ flag 

was set to false. The AI of the boids was designed in such a way 

that, if a boid is unregistered, it discards its current desired goals 

and choose a random goal that fall in its default allocated cell at 

the beginning of the simulation. This essentially resets the boid 

to its default cell by pursuing that goal, minimizing the 

possibility of boids packing up in a single cell which can greatly 

affect performance.  
 

3.3 Game Application Design Framework 

The crowd simulation framework was implemented in a first 

person shooter video game called HERO. In the game, a player 

controls a character that is tasked with a main goal of rescuing a 

hostage at a given checkpoint in a game world. The hostage is 

being kept by the ‘enemies’, and the player’s goal is to find and 

rescue the hostage without being detected by the enemies. If 

detected, the enemies will flock towards the player and attack 

him. The ‘enemies’ represents the crowd of boids in the game 

environment. Other than visual detection, other actions such as 

player’s actions such as gunfire can alert nearby boids to search 

the area where the gun was fired, and if player is found, the boids 

will flock towards and attack the player. 
 

3.3.1 Boids Navigation: The games virtual environment was 

designed to mimic a city with a lot of objects such as buildings 

and walls. Each boid must avoid collision with these objects 

when moving along its desired goal, including other boids in the 

simulation. Due to the complexity of the virtual scene, a path 

planning algorithm was used for calculating obstacle-free paths. 
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The researchers used greedy best-first search algorithm for path 

planning. As indicated by (Afanasyeva & Afanasyeva, 2014), a 

simplified representation of the game environment (a graph) was 

used by the path planning algorithm to calculate obstacle-free 

paths for the boids in the simulation. Given a start node and the 

goal node, the algorithm approximated a collision-free path by 

expanding nodes on the graph that are nearest to the goal node. 

The algorithm guarantees a collision free path only with static 

obstacles in the environment. 

 

 
Fig. 7: Flowchart showing application functionality 

 

3.3.2 Boid Modeling: The 3D models representing the boid 

agent in the game were designed to represent human models. The 

virtual human models were defined by their mesh, their 

skeletons, and their set of textures. Different elements were 

varied across models such as texture color as indicated by 

(Thalmann, Grillon, Maim, & Yersin, 2009). Modelling was 

done using Blender software. 

 

3.3.3 Boids Animation: The 3D models were pre-animated 

using motion capture data from Carnegie Mellon University’s 

motion capture database files. The motion capture data from the 

files was mapped onto the skeleton of the 3D mesh that 

represents the boid so that the boid may replicate actual human 

motion captured on camera. BVHacker software was used for 

editing motion capture data, and Blender was used to map that 

data onto a models’ skeleton. 

 

3.4 Sampling 

Random sampling was used for determining the input size of the 

algorithm, i.e. crowd size, and the samples are captured 

uniformly during the simulation run. Each sample was captured 

after every five simulation runs, and two variables were 

captured; the profiled average run time of the simulation 

algorithm and the average time of simulating a single boid. The 

following table outlines a sample frame structure. 

 

Table 1: Structure of a sample frame 

Frame number Average 

time/population 

Average 

time/single boid 

 

3.4.1 Profiling execution times: To calculate average times for 

each sample frame, the total execution for each algorithm time 

was measured by using high resolution timestamps using 

Windows API method, QueryPerfomanceCounter(). This 

function ‘retrieves the current value of the performance counter, 

which is a high resolution (<1µs) time stamp that can be used for 

time-interval measurements’ (Microsoft, 2017). These counters 

can provide information as to how well an algorithm is 

performing.  
 

The usage of the high resolution time stamping method was 

chosen as it is typically the best method to use to time stamp 

events and measure small time intervals that occur on a system. 

The only limitation is that it is a Windows API and only work on 

Windows, thus, experiments will only be limited to the Windows 

operating system. 

 

3.5 Data Analysis Procedure 

The researcher used quantitative analysis on the results obtained 

from the experiments. The average execution time values 

(means) obtained by executing the algorithm under same 

conditions were afterward used to conduct a chi-squared test to 

determine if there exist a significant difference in performance 

after the uniform spatial subdivision was implemented to the 

naïve algorithm. The tests were conducted using GNU’s PSPP 

statistical package. This analysis procedure helped to verifying 

the research hypothesis. 

 

4. DATA PRESENTATION, ANALYSIS AND 

INTERPRETATION 
4.1 Data presentation  

Profiling was used to gather data for the experimental 

measurement of the performance of the algorithms using time 

stamping, and a benchmark was conducted to assess the relative 

performance of uniform grid to the naïve implementation. An 

experiment was carried out for each algorithm, and each 

experiment is intended to execute that algorithm on an input 

problem of size n, that is, the crowd size. 

 

Samples were taken after every five simulation runs, and two 

variables were captured in each sample; the average time taken 

to simulate the whole population and the average time taken to 

simulate a single boid in the population. A total of 5000 samples 

were taken for each simulation run. Benchmarking was done on 

an HP 655 Laptop with 4GB RAM, an AMD E2-1800 APU 

1.70Gz processor and 64-bit Windows 7 Ultimate operating 

system. Table 2 below shows summaries. 

 

Table 2: Simulation times of two algorithms 

Simulati

on run 

 

Crow

d Size 

 

Naïve Approach Uniform Grid 

Approach (3x3 grid) 

Avg 

Time/Cr

owd(µs) 

Avg 

Time/ 

Boid (µs) 

Avg 

Time/Cro

wd(µs) 

Avg 

Time/ 

Boid (µs) 

1 9 50.843 5.649 39.8429 4.427 

2 12 64.961 5.413 46.662 3.889 

3 86 1761.944 20.488 468.072 5.443 

4 386 35273.175 91.382 6991.424 18.112 

5 469 49011.579 104.502 9203.373 19.623 

6 590 82597.872 139.996 14948.575 25.337 

7 855 212265.70

2698 

248.2639

80 

33798.5520

13 

39.53395

1 

8 967 329499.81

2 

340.744 47419.902 49.038 

9 1290 640414.36

6 

496.519 108848.248 84.372 
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Average time per simulation run is calculated as:  
𝑇𝑜𝑡𝑎𝑙 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑇𝑖𝑚𝑒

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠 (𝑟𝑢𝑛𝑠)
 

 

Average time to simulate a single boid is calculated as:   
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑖𝑚𝑒 𝑝𝑒𝑟 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝑇𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑜𝑖𝑑𝑠
 

 

4.2 Data analysis and interpretation 

A chi-square test was carried out on the means (average 

execution times) in the experiment. The aim was to determine if 

there is a significant difference in performance as a result of the 

grid implementation. Statistic results obtained in PSPP from the 

above experiment are given below: 

 

Table 3: Chi-square test results 

 

 
 

Figure 9 below shows the graphical representation of the 

comparison. 

 
Fig. 8: Naive vs. Uniform grid results 

 

According to the results of implementation of the 3x3 uniform 

grid, best performance speedups were achieved when crowd 

sizes were large as compared to smaller crowd sizes. This is 

largely the result of the cost of determining the current cell on 

the grid that each boid resides in each simulation run. For a small 

crowd size, the naïve approach of neighborhood gathering is 

much efficient because there are very few neighborhood 

comparisons that are made and there are no costs of cell 

allocation. The uniform grid, though faster than naïve approach 

for the same small crowd size, is less effective because the 

algorithm has an additional cost of determining the cell that each 

boid lie before determining a Boid’s nearest neighbors. 

 

However, as the crowd size is increased, the uniform grid 

becomes more efficient than the brute force approach because it 

discards a large amount of the crowd from neighborhood tests as 

compared to the naïve approach. Moreover, the goal allocation 

strategy used by the researchers limited each cell’s carrying 

capacity to values less than the total population size, which 

avoided the boids to gather in a single cell, thus avoiding the 

same order of evaluation as the naïve approach. In other words, 

increasing the number of boids leads to a significant performance 

improvement when using the uniform grid because it largely 

minimizes unnecessary neighborhood tests. On the contrary, 

small crowd sizes do not result in best speedups because there 

are few neighborhood tests that need to be performed and there 

is are greater costs of cell allocation. 

 

5. SUMMARY OF RESEARCH FINDINGS 
To find the difference between the algorithms execution times, 

time stamping method was used to measure the interval between 

each algorithm start times up to its finishing time. Results 

obtained indicated that the uniform grid implementation 

performed better at large crowd sizes as compared to the naïve 

neighborhood gathering. Moreover, goal setting allowed the 

crowd to be uniformly distributed across the environment during 

the simulation, thus, minimizing the possibility of a worst case 

scenario whereby the whole population is cluttered in a single 

cell.  

 

5.1 Conclusion 

The aim of the researcher was to determine if implementation of 

uniform spatial subdivision in the Boids algorithm may speed up 

simulation of large crowds.  By using the research results 

gathered, we can say the research objectives were achieved to a 

greater extent. 

 

The statistical results obtained from chi-square test produced a 

p-value of 0.230. Using the test, we reject H0 if p is less than 

0.05.  In this case, we would fail to reject H0 and conclude that 

there is no significant difference of using the uniform spatial 

subdivision approach in improving performance of the naïve 

boids algorithm. However, by improving performance, we 

actually mean reducing the actual execution time, not increasing 

it. This means there exist weak evidence that there is no 

significant difference of using the uniform spatial subdivision 

approach in increasing performance of the naïve boids algorithm, 

thus, we reject H0 and conclude that there is a significant 

difference of using the uniform spatial subdivision approach in 

increasing performance of the naïve boids algorithm. Thus the 

researchers was able to accelerate performance of the naïve 

Boids algorithm by using uniform spatial subdivision technique. 

We can safely say the implementation of uniform spatial 

subdivision improves performance of the Boids algorithm in 

simulating flocking behavior in large crowds. The benchmark 

results indicated that the researchers were able to accelerate 

performance, since we were able to simulate up to 1290 boids at 

interactive frame rates as compared to the naïve algorithm. 

 

5.2 Recommendations and future work 

Due to the performance results obtained in this research, we 

recommend implementation of the uniform grid technique when 

optimizing simulations that involve a lot of interacting objects in 

real-time, be it crowd or particle simulations. Its simplicity of 

implementation in combination with using a set of goals to 

constrain objects movement, can offer a great deal of 

performance while ensuring uniform distribution of objects on 

the grid to avoid performance hitches. We have shown that this 

technique was able to simulate more than 1000 boids at 

interactive rates. A possible combination that might be exploited 

in the future is to combine parallel processing methods (e.g. 

multithreading) with the uniform grid to further improve the 

grid’s performance. 
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